COVID-19 Results Briefing

United States of America

May 20, 2021

This document contains summary information on the latest projections from the IHME model on COVID-19 in the United States of America. The model was run on May 19, 2021, with data through May 17, 2021.

The epidemic continues to steadily decline in the US. Declining seasonality and rising vaccination rates in our reference scenario will bring daily deaths to a very low number by the end of July. This scenario already includes the expected abrupt drops in mask use in the vaccinated due to new CDC guidance on mask use. Vaccination rates are hitting the limits of demand, and we expect that by September, only 189 million will have received at least one dose. Daily infections are expected to start to rise again, albeit slowly, in late August. This increase would be faster if new escape variants spread, particularly P.1 and B.1.617. The rise in daily infections expected at the end of August, despite nearly 70% of adults being vaccinated, is due to the 30% of adults who will not be vaccinated and a much larger proportion of children not vaccinated, combined with the fact that 25-30% of the vaccinated would be able to be infected by one of the escape variants. This provides a large enough pool of individuals to sustain transmission, particularly under the circumstances where there is minimal to no mask use, pre-COVID mobility levels, and the spread of escape variants. The small rise seen in the reference scenario at the end of August would likely continue throughout the fall heading into the winter transmission season. The main strategies to pursue at the federal and state levels are three-fold: make every effort to vaccinate those who are currently unsure if they want to be vaccinated; encourage a return to mask use if and when transmission returns in a community, and minimize the risk of spread of new variants, particularly P.1 and B.1.617.

Current situation

• Daily reported cases in the last week decreased to 32,500 per day on average compared to 43,100 the week before (Figure 1).

• Daily deaths, corrected for under-reporting, in the last week decreased to 830 per day on average compared to 980 the week before (Figure 2). This makes COVID-19 the number 2 cause of death in the United States of America this week (Table 1).

• The daily death rate is greater than 4 per million in Kentucky, Michigan, and West Virginia (Figure 3).

• We estimated that 35% of people in the US have been infected as of May 17 (Figure 5).

• Effective R, computed using cases, hospitalizations, and deaths, is greater than 1 in Arkansas (Figure 6).

• The infection-detection rate in the US was close to 25% on May 17 (Figure 7).
Based on the CDC and GISAID sequencing databases and our variant spread model, we estimate the current prevalence of key variants of concern (Figure 8). B.1.1.7 is the dominant variant throughout the US. There is evidence of transmission of P.1 in many states and some indication of increasing transmission in Florida.

Trends in drivers of transmission

- Mandates have not changed in the last week.
- Mobility last week was 14% lower than the pre-COVID-19 baseline (Figure 10). Mobility was near baseline (within 10%) in 25 states. Mobility was lower than 30% of baseline in the District of Columbia.
- As of May 17, in Facebook surveys, 64% of people self-report that they always wore a mask when leaving their home (Figure 12). Mask use was lower than 50% in Alabama, Alaska, Arkansas, Idaho, Louisiana, Mississippi, Montana, North Dakota, Oklahoma, South Dakota, and Wyoming.
- There were 388 diagnostic tests per 100,000 people on May 17 (Figure 14).
- In the US, 69.4% of people say they would accept or would probably accept a vaccine for COVID-19. The fraction of the population who are open to receiving a COVID-19 vaccine ranges from 54% in Wyoming to 82% in the District of Columbia (Figure 18).
- In our current reference scenario, we expect that 189 million people will be vaccinated by September 1 (Figure 19).

Projections

- In our reference scenario, which represents what we think is most likely to happen, our model projects 948,000 cumulative deaths on September 1, 2021. This represents 29,000 additional deaths from May 17 to September 1 (Figure 20). Daily deaths are expected to decline steadily until September 1 (Figure 21).
- If universal mask coverage (95%) were attained in the next week, our model projects 8,800 fewer cumulative deaths compared to the reference scenario on September 1, 2021 (Figure 20).
- Under our worse scenario, our model projects 960,000 cumulative deaths on September 1, 2021, an additional 12,000 deaths compared to our reference scenario (Figure 20).
- By September 1, we project that 17,400 lives will be saved by the projected vaccine rollout. This does not count the lives saved through vaccination that has already been delivered.
- Daily infections in the reference scenario will decline until a low at the end of July and then begin to increase very slowly in August (Figure 22). In the worse scenario, we forecast a higher level of transmission and then a steeper increase in daily infections in August.
• Figure 23 compares our reference scenario forecasts to other publicly archived models. All models suggest steady declines in daily deaths at least until mid-August.

• At some point from May through September 1, 10 states will have high or extreme stress on hospital beds (Figure 24). At some point from May through September 1, 16 states will have high or extreme stress on ICU capacity (Figure 25).
Model updates

In the IHME estimation of COVID-19 infections, hospitalizations, and deaths to date, we have used officially reported COVID-19 deaths for nearly all locations. As of the week of May 3rd, we have switched to a new approach that relies on the estimation of total mortality due to COVID-19. There are several reasons that have led us to adopt this new approach. These reasons include the fact that testing capacity varies markedly across countries and within countries over time, which means that the reported COVID-19 deaths as a proportion of all deaths due to COVID-19 also vary markedly across countries and within countries over time. In addition, in many high-income countries, deaths from COVID-19 in older individuals, especially in long-term care facilities, went unrecorded in the first few months of the pandemic. In other countries, such as Ecuador, Peru, and the Russian Federation, the discrepancy between reported deaths and analyses of death rates compared to expected death rates, sometimes referred to as “excess mortality,” suggests that the total COVID-19 death rate is many multiples larger than official reports. Estimating the total COVID-19 death rate is important both for modeling the transmission dynamics of the disease to make better forecasts, and also for understanding the drivers of larger and smaller epidemics across different countries.

Our approach to estimating the total COVID-19 death rate is based on measurement of the excess death rate during the pandemic week by week compared to what would have been expected based on past trends and seasonality. However, the excess death rate does not equal the total COVID-19 death rate. Excess mortality is influenced by six drivers of all-cause mortality that relate to the pandemic and the social distancing mandates that came with the pandemic. These six drivers are: a) the total COVID-19 death rate, that is, all deaths directly related to COVID-19 infection; b) the increase in mortality due to needed health care being delayed or deferred during the pandemic; c) the increase in mortality due to increases in mental health disorders including depression, increased alcohol use, and increased opioid use; d) the reduction in mortality due to decreases in injuries because of general reductions in mobility associated with social distancing mandates; e) the reductions in mortality due to reduced transmission of other viruses, most notably influenza, respiratory syncytial virus, and measles; and f) the reductions in mortality due to some chronic conditions, such as cardiovascular disease and chronic respiratory disease, that occur when frail individuals who would have died from these conditions died earlier from COVID-19 instead. To correctly estimate the total COVID-19 mortality, we need to take into account all six of these drivers of change in mortality that have happened since the onset of the pandemic.

Our analysis follows four key steps. First, for all locations where weekly or monthly all-cause mortality has been reported since the start of the pandemic, we estimate how much mortality increased compared to the expected death rate. In other words, we estimate excess mortality in all locations with sufficient data. Second, based on a range of studies and consideration of other evidence, we estimate the fraction of excess mortality that is from total COVID-19 deaths as opposed to the five other drivers that influence excess mortality. Third, we build a statistical model that predicts the weekly ratio of total COVID-19 deaths to reported COVID-19 deaths based on covariates and spatial effects. Fourth, we use this statistical relationship to predict the ratio of total to reported COVID-19 deaths in places without data on total COVID-19 deaths and then multiply the reported COVID-19 deaths by this ratio to generate estimates of total COVID-19 deaths for all locations.
Figure 1. Reported daily COVID-19 cases

Table 1. Ranking of COVID-19 among the leading causes of mortality this week, assuming uniform deaths of non-COVID causes throughout the year

<table>
<thead>
<tr>
<th>Cause name</th>
<th>Weekly deaths</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic heart disease</td>
<td>10,724</td>
<td>1</td>
</tr>
<tr>
<td>COVID-19</td>
<td>5,833</td>
<td>2</td>
</tr>
<tr>
<td>Tracheal, bronchus, and lung cancer</td>
<td>3,965</td>
<td>3</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease</td>
<td>3,766</td>
<td>4</td>
</tr>
<tr>
<td>Stroke</td>
<td>3,643</td>
<td>5</td>
</tr>
<tr>
<td>Alzheimer’s disease and other dementias</td>
<td>2,768</td>
<td>6</td>
</tr>
<tr>
<td>Chronic kidney disease</td>
<td>2,057</td>
<td>7</td>
</tr>
<tr>
<td>Colon and rectum cancer</td>
<td>1,616</td>
<td>8</td>
</tr>
<tr>
<td>Lower respiratory infections</td>
<td>1,575</td>
<td>9</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>1,495</td>
<td>10</td>
</tr>
</tbody>
</table>
Figure 2. Smoothed trend estimate of reported daily COVID-19 deaths (blue) and total daily COVID-19 deaths (orange).
Figure 3. Daily COVID-19 death rate per 1 million on May 17, 2021

Figure 4. Cumulative COVID-19 deaths per 100,000 on May 17, 2021
Figure 5. Estimated percent of the population infected with COVID-19 on May 17, 2021

Figure 6. Mean effective R on May 06, 2021. The estimate of effective R is based on the combined analysis of deaths, case reporting, and hospitalizations where available. Current reported cases reflect infections 11-13 days prior, so estimates of effective R can only be made for the recent past. Effective R less than 1 means that transmission should decline, all other things being held the same.
Figure 7. Percent of COVID-19 infections detected. This is estimated as the ratio of reported daily COVID-19 cases to estimated daily COVID-19 infections based on the SEIR disease transmission model.

*Due to measurement errors in cases and testing rates, the infection to detection rate (IDR) can exceed 100% at particular points in time.
Figure 8. Estimated percent of circulating SARS-CoV-2 for 3 primary variants on May 17, 2021.

A. Estimated percent B.1.1.7 variant

B. Estimated percent B.1.351 variant
C. Estimated percent B.1.617 variant

D. Estimated percent P.1 or P.3 variant
Figure 9. Infection fatality ratio on May 17, 2021. This is estimated as the ratio of COVID-19 deaths to infections based on the SEIR disease transmission model.
Critical drivers

Table 2. Current mandate implementation

*Not all locations are measured at the subnational level.
Figure 10. Trend in mobility as measured through smartphone app use compared to January 2020 baseline

Figure 11. Mobility level as measured through smartphone app use compared to January 2020 baseline (percent) on May 17, 2021
Figure 12. Trend in the proportion of the population reporting always wearing a mask when leaving home

Figure 13. Proportion of the population reporting always wearing a mask when leaving home on May 17, 2021
Figure 14. Trend in COVID-19 diagnostic tests per 100,000 people

Figure 15. COVID-19 diagnostic tests per 100,000 people on April 19, 2021
Figure 16. Increase in the risk of death due to pneumonia on February 1 compared to August 1
Table 3. The SEIR model uses variant-specific estimates of vaccine efficacy at preventing symptomatic disease and at preventing infection. We use data from clinical trials directly, where available, and make estimates otherwise. More information can be found on our website (http://www.healthdata.org/node/8584).

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Efficacy at preventing disease: D614G & B.1.1.7</th>
<th>Efficacy at preventing infection: D614G & B.1.1.7</th>
<th>Efficacy at preventing disease: B.1.351, B.1.617, & P.1</th>
<th>Efficacy at preventing infection: B.1.351, B.1.617, & P.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>AstraZeneca</td>
<td>74%</td>
<td>52%</td>
<td>10%</td>
<td>9%</td>
</tr>
<tr>
<td>CoronaVac</td>
<td>50%</td>
<td>44%</td>
<td>38%</td>
<td>33%</td>
</tr>
<tr>
<td>Covaxin</td>
<td>78%</td>
<td>69%</td>
<td>59%</td>
<td>52%</td>
</tr>
<tr>
<td>Janssen</td>
<td>72%</td>
<td>72%</td>
<td>64%</td>
<td>56%</td>
</tr>
<tr>
<td>Moderna</td>
<td>94%</td>
<td>89%</td>
<td>79%</td>
<td>75%</td>
</tr>
<tr>
<td>Novavax</td>
<td>89%</td>
<td>79%</td>
<td>49%</td>
<td>43%</td>
</tr>
<tr>
<td>Pfizer/BioNTech</td>
<td>91%</td>
<td>86%</td>
<td>76%</td>
<td>72%</td>
</tr>
<tr>
<td>Sinopharm</td>
<td>73%</td>
<td>65%</td>
<td>55%</td>
<td>49%</td>
</tr>
<tr>
<td>Sputnik-V</td>
<td>92%</td>
<td>81%</td>
<td>70%</td>
<td>61%</td>
</tr>
<tr>
<td>Tianjin</td>
<td>66%</td>
<td>58%</td>
<td>50%</td>
<td>44%</td>
</tr>
<tr>
<td>CanSino</td>
<td>75%</td>
<td>66%</td>
<td>57%</td>
<td>50%</td>
</tr>
<tr>
<td>Other vaccines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other vaccines (mRNA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>91%</td>
<td>86%</td>
<td>76%</td>
<td>72%</td>
</tr>
</tbody>
</table>
Figure 17. Trend in the estimated proportion of the adult (18+) population that have been vaccinated or is open to receiving a COVID-19 vaccine based on Facebook survey responses (yes and yes, probably).

Figure 18. This figure shows the estimated proportion of the adult (18+) population that has been vaccinated or is open to receiving a COVID-19 vaccine based on Facebook survey responses (yes and yes, probably).
Figure 19. The number of people who receive any vaccine and those who are effectively vaccinated and protected against disease, accounting for efficacy, loss to follow up for two-dose vaccines, partial immunity after one dose, and immunity after two doses.
Projections and scenarios

We produce three scenarios when projecting COVID-19. The reference scenario is our forecast of what we think is most likely to happen:

- Vaccines are distributed at the expected pace.
- Governments adapt their response by re-imposing social distancing mandates for 6 weeks whenever daily deaths reach 8 per million, unless a location has already spent at least 7 of the last 14 days with daily deaths above this rate and not yet re-imposed social distancing mandates. In this case, the scenario assumes that mandates are re-imposed when daily deaths reach 15 per million.
- Variants B.1.1.7 (first identified in the UK), B.1.351 (first identified in South Africa), and P1 (first identified in Brazil) continue to spread from locations with (a) more than 5 sequenced variants, and (b) reports of community transmission, to adjacent locations following the speed of variant scale-up observed in the regions of the UK.
- In one-quarter of those vaccinated, mobility increases toward pre-COVID-19 levels.

The worse scenario modifies the reference scenario assumptions in three ways:

- First, it assumes that variants B.1.351 or P1 begin to spread within 3 weeks in adjacent locations that do not already have B.1.351 or P1 community transmission.
- Second, it assumes that all those vaccinated increase their mobility toward pre-COVID-19 levels.
- Third, it assumes that among those vaccinated, mask use starts to decline exponentially one month after completed vaccination.

The universal masks scenario makes all the same assumptions as the reference scenario but also assumes 95% of the population wear masks in public in every location.
Figure 20. Cumulative COVID-19 deaths until September 01, 2021 for three scenarios

Figure 21. Daily COVID-19 deaths until September 01, 2021 for three scenarios,
Figure 22. Daily COVID-19 infections until September 01, 2021 for three scenarios.
Figure 23. Comparison of reference model projections with other COVID modeling groups. For this comparison, we are including projections of daily COVID-19 deaths from other modeling groups when available: Delphi from the Massachusetts Institute of Technology (Delphi; https://www.covidanalytics.io/home), Imperial College London (Imperial; https://www.covidsim.org), The Los Alamos National Laboratory (LANL; https://covid-19.bsvgateway.org/), the SI-KJalpha model from the University of Southern California (SIKJalpha: https://github.com/scc-usc/ReCOVER-COVID-19), and the CDC Ensemble Model (CDC; https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html#ensembleforecast.) Daily deaths from other modeling groups are smoothed to remove inconsistencies with rounding. Regional values are aggregates from available locations in that region.

<table>
<thead>
<tr>
<th>Date</th>
<th>Daily deaths</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun 21</td>
<td></td>
<td>IHME</td>
</tr>
<tr>
<td>Jul 21</td>
<td></td>
<td>Delphi</td>
</tr>
<tr>
<td>Aug 21</td>
<td></td>
<td>Imperial</td>
</tr>
<tr>
<td>Sep 21</td>
<td></td>
<td>LANL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SIKJalpha</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CDC</td>
</tr>
</tbody>
</table>

Models
- IHME
- Delphi
- Imperial
- LANL
- SIKJalpha
- CDC
Figure 24. The estimated inpatient hospital usage is shown over time. The percent of hospital beds occupied by COVID-19 patients is color coded based on observed quantiles of the maximum proportion of beds occupied by COVID-19 patients. Less than 5% is considered low stress, 5-9% is considered moderate stress, 10-19% is considered high stress, and greater than 20% is considered extreme stress.
Figure 25. The estimated intensive care unit (ICU) usage is shown over time. The percent of ICU beds occupied by COVID-19 patients is color coded based on observed quantiles of the maximum proportion of ICU beds occupied by COVID-19 patients. Less than 10% is considered low stress, 10-29% is considered moderate stress, 30-59% is considered high stress, and greater than 60% is considered extreme stress.
More information

Data sources:

Mask use data sources include Premise; Facebook Global Symptom Survey (This research is based on survey results from University of Maryland Social Data Science Center) and the Facebook United States Symptom Survey (in collaboration with Carnegie Mellon University); Kaiser Family Foundation; YouGov COVID-19 Behaviour Tracker survey.

Vaccine hesitancy data are from the COVID-19 Beliefs, Behaviors, and Norms Study, a survey conducted on Facebook by the Massachusetts Institute of Technology (https://covidsurvey.mit.edu/).

Vaccine hesitancy data are from the Facebook Global Symptom Survey (This research is based on survey results from University of Maryland Social Data Science Center), the Facebook United States Symptom Survey (in collaboration with Carnegie Mellon University), and from the Facebook COVID-19 Beliefs, Behaviors, and Norms Study conducted by the Massachusetts Institute of Technology.

Genetic sequence and metadata are primarily from the GISAID Initiative. Further details available on the COVID-19 model FAQ page.

A note of thanks:

We wish to warmly acknowledge the support of these and others who have made our COVID-19 estimation efforts possible.

More information:

For all COVID-19 resources at IHME, visit http://www.healthdata.org/covid.