COVID-19 Results Briefing

The African Region

July 21, 2021

This document contains summary information on the latest projections from the IHME model on COVID-19 in the African Region. The model was run on July 20, 2021, with data through July 19, 2021.

Daily reported cases decreased this week for the first time since mid-May, from an average of 30,800 cases per day last week to 26,600 per day this week. However, daily reported deaths increased by 9.7% to 680 per day on average and are expected to rise to 750 by August 9. Estimated excess daily deaths are 2.9 times larger than reported daily deaths, making COVID-19 the number 2 cause of death in the region this week. With 28 countries having an effective R greater than 1, we expect transmission to continue to increase throughout the region, driven in large part by the Delta variant. Public fatigue toward mask use and other social distancing measures further exacerbates these trends. Due to sustained high case numbers, health systems continue to struggle – at some point between now and November 1, we anticipate 25 countries will have high or extreme stress on hospital beds and 44 countries will have high or extreme stress on intensive care unit (ICU) capacity. In our reference scenario, we project 162,000 cumulative reported deaths by November 1, representing 54,000 lives lost between July 19 and November 1; if universal mask use were achieved, 18,000 lives could be saved. When excess deaths are taken into account, we project 479,000 cumulative deaths, with 168,000 additional deaths between July 19 and November 1. Universal mask use could prevent 59,000 cumulative excess deaths. Using vaccine coverage by vaccine type and our systematic analysis of vaccine effectiveness by variant, and also considering past infection and the protection that provides against the Delta variant, we expect that only 38% of people will be immune to non-escape variants and 32% of people will be immune to escape variants by November 1. If vaccine hesitancy and global inequalities continue to slow the pace of vaccination in the region, we should expect future surges given the large percentage of susceptible individuals. Strategies to manage COVID-19 must prioritize, whenever possible, increasing vaccination with the more effective vaccines as well as improving vaccine confidence; concerted global efforts to reduce inequalities in access to vaccines must also occur in tandem. Equally important are increasing protection by vaccination, sustaining or re-implementing mask mandates and other social distancing measures in response to rising transmission, and bolstering public adherence to such measures; these strategies are critical to saving lives.

Current situation

- Daily reported cases in the last week (through July 19) decreased to 26,600 per day on average compared to 30,800 the week before (Figure 1).
- Reported deaths due to COVID-19 in the last week increased to 680 per day on average compared to 620 the week before (Figure 2).
• Excess deaths due to COVID-19 in the last week increased to 1,900 per day on average compared to 1,700 the week before (Figure 2). This makes COVID-19 the number 2 cause of death in the African Region this week (Table 1). Estimated excess daily deaths due to COVID-19 were 2.9 times larger than the reported number of deaths.

• The daily reported COVID-19 death rate is greater than 4 per million in Botswana, Namibia, Seychelles, South Africa, and Zimbabwe (Figure 3).

• The daily rate of excess deaths due to COVID-19 is greater than 4 per million in Botswana, Eswatini, Namibia, Seychelles, South Africa, Zambia, and Zimbabwe (Figure 3).

• We estimated that 25% of people in the African Region have been infected as of July 19 (Figure 5).

• Effective R, computed using cases, hospitalizations, and deaths, is greater than 1 in 28 countries (Figure 6).

• The infection-detection rate in the African Region was close to 3% on July 19 (Figure 7).

• Based on the GISAID and various national databases, combined with our variant spread model, we estimate the current prevalence of variants of concern (Figure 8). We estimate that B.1.351 is circulating in six countries, that B.1.617 is circulating in 36 countries, and that P.1 is circulating in no countries.

Trends in drivers of transmission

• Mobility last week was 10% higher than the pre-COVID-19 baseline (Figure 10). Mobility was near baseline (within 10%) in 42 countries. Mobility was lower than 30% of baseline in Cabo Verde, Seychelles, and Uganda.

• As of July 19, in the COVID-19 Trends and Impact Survey, 47% of people self-report that they always wore a mask when leaving their home, the same as last week (Figure 12).

• There were 17 diagnostic tests per 100,000 people on July 19 (Figure 14).

• In the African Region, 59.8% of people say they would accept or would probably accept a vaccine for COVID-19. This is down by 0.6 percentage points from last week. The fraction of the population who are open to receiving a COVID-19 vaccine ranges from 34% in Cameroon to 75% in Guinea (Figure 18).

• In our current reference scenario, we expect that 109.9 million people will be vaccinated by November 1 (Figure 19).

• In our current reference scenario, we expect that by November 1, 38% of people will be immune to non-escape variants and 32% of people will be immune to escape variants (Figure 20).
Projections

- In our **reference scenario**, which represents what we think is most likely to happen, our model projects 162,000 cumulative reported deaths due to COVID-19 on November 1. This represents 54,000 additional deaths from July 19 to November 1. Daily reported deaths will rise to 750 by August 9, 2021 (Figure 21).

- Under our **reference scenario**, our model projects 479,000 cumulative excess deaths due to COVID-19 on November 1. This represents 168,000 additional deaths from July 19 to November 1. Daily excess deaths due to COVID-19 will rise to 2,290 by August 11, 2021 (Figure 21).

- If **universal mask coverage (95%)** were attained in the next week, our model projects 18,000 fewer cumulative reported deaths compared to the reference scenario on November 1.

- If **universal mask coverage (95%)** were attained in the next week, our model projects 59,000 fewer cumulative excess deaths due to COVID-19 compared to the reference scenario on November 1.

- Under our **worse scenario**, our model projects 165,000 cumulative reported deaths on November 1, an additional 3,800 deaths compared to our reference scenario. Daily reported deaths in the worse scenario will rise to 770 by August 11, 2021 (Figure 21).

- Under our **worse scenario**, our model projects 491,000 cumulative excess deaths due to COVID-19 on November 1, an additional 12,000 deaths compared to our reference scenario. Daily excess deaths due to COVID-19 in the worse scenario will rise to 2,350 by August 13, 2021 (Figure 21).

- Daily infections in the reference scenario will rise to 1,671,570 by September 25, 2021 (Figure 26). Daily infections in the worse scenario will rise to 1,891,380 by September 27, 2021 (Figure 26).

- By November 1, we project that 21,600 lives will be saved by the projected vaccine rollout. This does not include lives saved through vaccination that has already been delivered.

- Figure 23 compares our reference scenario forecasts to other publicly archived models. Forecasts are widely divergent.

- At some point from July through November 1, 25 countries will have high or extreme stress on hospital beds (Figure 24). At some point from July through November 1, 44 countries will have high or extreme stress on ICU capacity (Figure 25).
Model updates

Our mobility covariate that is used in the projections of COVID infections and deaths was updated to account for observed sustained levels of high mobility. Specifically, the mobility forecasts used in both the reference and universal mask coverage projection scenarios were adjusted upward according to vaccine uptake. This is equivalent to what was previously used in the worse projection scenario. To produce vaccine-adjusted mobility forecasts, we assume that social distancing mandates decline exponentially with respect to increasing vaccine uptake such that all mandates are lifted 30 days after vaccine coverage reaches 75%. In locations where vaccine uptake is already high, projected mandates are ramped down linearly from the current value to the vaccine-adjusted value over a 30-day period. As a final change, for locations whose last day of data indicates mobility levels above baseline (defined as average mobility during the period 1/3/2020 to 2/6/2020), we no longer cap forecasted mobility at zero. The variant spread model was updated to allow for spread to have occurred in the past in locations with some variant surveillance when there was little to no sequence data to confirm or reject the potential invasion.
Figure 1. Reported daily COVID-19 cases

Table 1. Ranking of excess deaths due to COVID-19 among the leading causes of mortality this week, assuming uniform deaths of non-COVID causes throughout the year

<table>
<thead>
<tr>
<th>Cause name</th>
<th>Weekly deaths</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonatal disorders</td>
<td>14,422</td>
<td>1</td>
</tr>
<tr>
<td>COVID-19</td>
<td>13,485</td>
<td>2</td>
</tr>
<tr>
<td>Lower respiratory infections</td>
<td>12,732</td>
<td>3</td>
</tr>
<tr>
<td>HIV/AIDS</td>
<td>12,224</td>
<td>4</td>
</tr>
<tr>
<td>Malaria</td>
<td>11,351</td>
<td>5</td>
</tr>
<tr>
<td>Diarrheal diseases</td>
<td>11,088</td>
<td>6</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>8,306</td>
<td>7</td>
</tr>
<tr>
<td>Stroke</td>
<td>8,063</td>
<td>8</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>7,097</td>
<td>9</td>
</tr>
<tr>
<td>Congenital birth defects</td>
<td>3,721</td>
<td>10</td>
</tr>
</tbody>
</table>
Figure 2. Smoothed trend estimate of reported daily COVID-19 deaths (blue) and excess daily deaths due to COVID-19 (orange)
Figure 3. Daily COVID-19 death rate per 1 million on July 19, 2021

A. Daily reported COVID-19 death rate per 1 million

B. Daily excess COVID-19 death rate per 1 million
Figure 4. Cumulative COVID-19 deaths per 100,000 on July 19, 2021

A. Reported cumulative COVID-19 deaths per 100,000

B. Excess cumulative COVID-19 deaths per 100,000
Figure 5. Estimated percent of the population infected with COVID-19 on July 19, 2021

Figure 6. Mean effective R on July 8, 2021. The estimate of effective R is based on the combined analysis of deaths, case reporting, and hospitalizations where available. Current reported cases reflect infections 11-13 days prior, so estimates of effective R can only be made for the recent past. Effective R less than 1 means that transmission should decline, all other things being held the same.
Figure 7. Percent of COVID-19 infections detected. This is estimated as the ratio of reported daily COVID-19 cases to estimated daily COVID-19 infections based on the SEIR disease transmission model. Due to measurement errors in cases and testing rates, the infection-detection rate can exceed 100% at particular points in time.
Figure 8. Estimated percent of circulating SARS-CoV-2 for primary variant families on July 19, 2021

A. Estimated percent B.1.1.7 variant

B. Estimated percent B.1.351 variant
C. Estimated percent B.1.617 variant

D. Estimated percent P.1 variant
Figure 9. Infection-fatality ratio on July 19, 2021
Critical drivers

Table 2. Current mandate implementation
Figure 10. Trend in mobility as measured through smartphone app use compared to January 2020 baseline

Figure 11. Mobility level as measured through smartphone app use compared to January 2020 baseline (percent) on July 19, 2021
Figure 12. Trend in the proportion of the population reporting always wearing a mask when leaving home.

Figure 13. Proportion of the population reporting always wearing a mask when leaving home on July 19, 2021.
Figure 14. Trend in COVID-19 diagnostic tests per 100,000 people

Figure 15. COVID-19 diagnostic tests per 100,000 people on July 19, 2021
Figure 16. Increase in the risk of death due to pneumonia on February 1 compared to August 1.
Table 3. Estimates of vaccine efficacy for specific vaccines used in the model at preventing disease and infection. The SEIR model uses variant-specific estimates of vaccine efficacy at preventing symptomatic disease and at preventing infection. We use data from clinical trials directly, where available, and make estimates otherwise. More information can be found on our website.

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Efficacy at preventing disease: D614G & B.1.1.7</th>
<th>Efficacy at preventing infection: D614G & B.1.1.7</th>
<th>Efficacy at preventing disease: B.1.351, B.1.617, & P.1</th>
<th>Efficacy at preventing infection: B.1.351, B.1.617, & P.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>AstraZeneca</td>
<td>74%</td>
<td>52%</td>
<td>53%</td>
<td>47%</td>
</tr>
<tr>
<td>CoronaVac</td>
<td>50%</td>
<td>44%</td>
<td>40%</td>
<td>35%</td>
</tr>
<tr>
<td>Covaxin</td>
<td>78%</td>
<td>69%</td>
<td>62%</td>
<td>55%</td>
</tr>
<tr>
<td>Janssen</td>
<td>72%</td>
<td>72%</td>
<td>64%</td>
<td>56%</td>
</tr>
<tr>
<td>Moderna</td>
<td>94%</td>
<td>89%</td>
<td>83%</td>
<td>79%</td>
</tr>
<tr>
<td>Novavax</td>
<td>89%</td>
<td>79%</td>
<td>73%</td>
<td>64%</td>
</tr>
<tr>
<td>Pfizer/BioNTech</td>
<td>91%</td>
<td>86%</td>
<td>81%</td>
<td>77%</td>
</tr>
<tr>
<td>Sinopharm</td>
<td>73%</td>
<td>65%</td>
<td>47%</td>
<td>41%</td>
</tr>
<tr>
<td>Sputnik-V</td>
<td>92%</td>
<td>81%</td>
<td>73%</td>
<td>65%</td>
</tr>
<tr>
<td>Tianjin</td>
<td>66%</td>
<td>58%</td>
<td>53%</td>
<td>47%</td>
</tr>
<tr>
<td>CanSino</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other vaccines</td>
<td>75%</td>
<td>66%</td>
<td>60%</td>
<td>53%</td>
</tr>
<tr>
<td>Other vaccines</td>
<td>91%</td>
<td>86%</td>
<td>81%</td>
<td>77%</td>
</tr>
<tr>
<td>(mRNA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 17. Trend in the estimated proportion of the adult (18+) population that have been vaccinated or would probably or definitely receive the COVID-19 vaccine if available.

Figure 18. This figure shows the estimated proportion of the adult (18+) population that has been vaccinated or would probably or definitely receive the COVID-19 vaccine if available.
Figure 19. Number of people who receive any vaccine and those who are effectively vaccinated and protected against disease, accounting for efficacy, loss to follow up for two-dose vaccines, partial immunity after one dose, and immunity after two doses.

Figure 20. Percentage of people who are immune to non-escape variants and the percentage of people who are immune to escape variants.
Projections and scenarios

We produce three scenarios when projecting COVID-19. The reference scenario is our forecast of what we think is most likely to happen:

- Vaccines are distributed at the expected pace.
- Governments adapt their response by re-imposing social distancing mandates for 6 weeks whenever daily deaths reach 8 per million, unless a location has already spent at least 7 of the last 14 days with daily deaths above this rate and not yet re-imposed social distancing mandates. In this case, the scenario assumes that mandates are re-imposed when daily deaths reach 15 per million.
- Variants B.1.1.7 (first identified in the UK), B.1.351 (first identified in South Africa), and P1 (first identified in Brazil) continue to spread from locations with (a) more than 5 sequenced variants, and (b) reports of community transmission, to adjacent locations following the speed of variant scale-up observed in the regions of the United Kingdom.
- In one-quarter of those vaccinated, mobility increases toward pre-COVID-19 levels.

The worse scenario modifies the reference scenario assumptions in three ways:

- First, it assumes that variants B.1.351 or P.1 begin to spread within three weeks in adjacent locations that do not already have B.1.351 or P.1 community transmission.
- Second, it assumes that all those vaccinated increase their mobility toward pre-COVID-19 levels.
- Third, it assumes that among those vaccinated, mask use starts to decline exponentially one month after completed vaccination.

The universal masks scenario makes all the same assumptions as the reference scenario but also assumes 95% of the population wear masks in public in every location.
Figure 21. Daily COVID-19 deaths until November 01, 2021 for three scenarios

A. Reported daily COVID-19 death per 100,000

B. Excess daily COVID-19 deaths per 100,000
Figure 22. Daily COVID-19 infections until November 01, 2021 for three scenarios

- Reference scenario
- Universal mask use
- Worse
Figure 23. Comparison of reference model projections with other COVID modeling groups. For this comparison, we are including projections of daily COVID-19 deaths from other modeling groups when available: Delphi from the Massachusetts Institute of Technology (Delphi), Imperial College London (Imperial), The Los Alamos National Laboratory (LANL), and the SI-KJalpha model from the University of Southern California (SIKJalpha). Daily deaths from other modeling groups are smoothed to remove inconsistencies with rounding. Regional values are aggregates from available locations in that region.
Figure 24. The estimated inpatient hospital usage is shown over time. The percent of hospital beds occupied by COVID-19 patients is color-coded based on observed quantiles of the maximum proportion of beds occupied by COVID-19 patients. Less than 5% is considered low stress, 5-9% is considered moderate stress, 10-19% is considered high stress, and 20% or greater is considered extreme stress.
Figure 25. The estimated intensive care unit (ICU) usage is shown over time. The percent of ICU beds occupied by COVID-19 patients is color-coded based on observed quantiles of the maximum proportion of ICU beds occupied by COVID-19 patients. Less than 10% is considered \textit{low stress}, 10-29\% is considered \textit{moderate stress}, 30-59\% is considered \textit{high stress}, and 60\% or greater is considered \textit{extreme stress}.
More information

Data sources:
Mask use and vaccine confidence data are from the The Delphi Group at Carnegie Mellon University and University of Maryland COVID-19 Trends and Impact Surveys, in partnership with Facebook. Mask use data are also from Premise, the Kaiser Family Foundation, and the YouGov COVID-19 Behaviour Tracker survey. Genetic sequence and metadata are primarily from the GISAID Initiative. Further details available on the COVID-19 model FAQ page.

A note of thanks:
We wish to warmly acknowledge the support of these and others who have made our COVID-19 estimation efforts possible.

More information:
For all COVID-19 resources at IHME, visit http://www.healthdata.org/covid.