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Key Points 
Question: Assuming social distancing measures are maintained, what are the forecasted gaps in 

available health service resources and number of deaths from the COVID-19 pandemic for each 

state in the United States?   

Findings: Using a statistical model, we predict excess demand will be 64,175 (95% UI 7,977 to 

251,059) total beds and 17,380 (95% UI 2,432 to 57,955) ICU beds at the peak of COVID-19. 

Peak ventilator use is predicted to be 19,481 (95% UI 9,767 to 39,674) ventilators. Peak demand 

will be in the second week of April. We estimate 81,114 (95% UI 38,242 to 162,106) deaths in 

the United States from COVID-19 over the next 4 months.  

Meaning: Even with social distancing measures enacted and sustained, the peak demand for 

hospital services due to the COVID-19 pandemic is likely going to exceed capacity substantially. 

Alongside the implementation and enforcement of social distancing measures, there is an urgent 

need to develop and implement plans to reduce non-COVID-19 demand for and temporarily 

increase capacity of health facilities.   

Abstract 
Importance: This study presents the first set of estimates of predicted health service utilization 

and deaths due to COVID-19 by day for the next 4 months for each state in the US.  

Objective: To determine the extent and timing of deaths and excess demand for hospital services 

due to COVID-19 in the US.  

Design, Setting, and Participants: This study used data on confirmed COVID-19  deaths by 

day from WHO websites and local and national governments; data on hospital capacity and 

utilization for US states; and observed COVID-19 utilization data from select locations to 

develop a statistical model forecasting deaths and hospital utilization against capacity by state for 

the US over the next 4 months. 

Exposure(s): COVID-19. 

Main outcome(s) and measure(s): Deaths, bed and ICU occupancy, and ventilator use. 

Results: Compared to licensed capacity and average annual occupancy rates, excess demand 

from COVID-19 at the peak of the pandemic in the second week of April is predicted to be 

64,175 (95% UI 7,977 to 251,059) total beds and 17,380 (95% UI 2,432 to 57,955) ICU beds. At 

the peak of the pandemic, ventilator use is predicted to be 19,481 (95% UI 9,767 to 39,674). The 

date of peak excess demand by state varies from the second week of April through May. We 

estimate that there will a total of 81,114 (95% UI 38,242 to 162,106) deaths from COVID-19 

over the next 4 months in the US. Deaths from COVID-19 are estimated to drop below 10 deaths 

per day between May 31 and June 6.    

Conclusions and Relevance: In addition to a large number of deaths from COVID-19, the 

epidemic in the US will place a load well beyond the current capacity of hospitals to manage, 

especially for ICU care. These estimates can help inform the development and implementation of 
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strategies to mitigate this gap, including reducing non-COVID-19 demand for services and 

temporarily increasing system capacity. These are urgently needed given that peak volumes are 

estimated to be only three weeks away. The estimated excess demand on hospital systems is 

predicated on the enactment of social distancing measures in all states that have not done so 

already within the next week and maintenance of these measures throughout the epidemic, 

emphasizing the importance of implementing, enforcing, and maintaining these measures to 

mitigate hospital system overload and prevent deaths.   

 

Data availability statement: A full list of data citations are available by contacting the 

corresponding author. 

 

Funding Statement: Bill & Melinda Gates Foundation and the State of Washington 

 

 

Background 
The Coronavirus Disease 2019 (COVID-19) pandemic started in Wuhan, China, in December 

20191 and has since spread to the vast majority of countries.2 As of March 24, 5 countries have 

recorded more than a thousand deaths: China, France, Iran, Italy, and Spain. COVID-19 is not 

only causing mortality but is also putting considerable stress on health systems with large case 

numbers. In the US, COVID-19 has spread to all 50 states, with 31 states reporting deaths so far. 

Estimates of the potential magnitude of COVID-19 patient volume are urgently needed for US 

hospitals to effectively manage the rising case load and provide the highest quality of care 

possible.  

 

COVID-19 forecasts have largely been based on mathematical models that capture the 

probability of moving between states from susceptible to infected, and then to a recovered state 

or death (SIR models). Many SIR models have been published or posted online.3–20 In general, 

these models assume random mixing between all individuals in a given population. While results 

of these models are sensitive to starting assumptions and thus differ between models 

considerably, they generally suggest that given current estimates of the basic reproductive rate 

(the number of cases caused by each case in a susceptible population), 25% to 70% of the 

population will eventually become infected.6,20 Based on reported case-fatality rates, these 

projections imply that there would be millions of deaths in the United States due to COVID-19. 

However, individual behavioral responses and government-mandated social distancing (school 

closures, non-essential service closures, and shelter-in-place orders) can dramatically influence 

the course of the epidemic. In Wuhan, strict social distancing was instituted on January 23, 2020, 

and by the time new infections reached 1 or fewer a day (March 15, 2020), the confirmed 

proportion of the population infected was less than 0.5%. SIR models with assumptions of 

random mixing can overestimate health service need by not taking into account behavioral 

change and government-mandated action. Using reported case numbers and models based on 

those for health service planning is also not ideal because of widely varying COVID-19 testing 

rates and strategies. For example, South Korea has undertaken aggressive population-based 

screening and testing, while in the US, limited test availability has led to largely restricting 

testing to those with more severe disease or those who are at risk of serious complications.  
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An alternative strategy is to focus on modeling the empirically observed COVID-19 population 

death rate curves, which directly reflect both the transmission of the virus and the case-fatality 

rates in each community. Deaths are likely more accurately reported than cases in settings with 

limited testing capacity where tests are usually prioritized for the more severely ill patients.  

Hospital service need is likely going to be highly correlated with deaths, given predictable 

disease progression probabilities by age for severe cases. In this study, we use statistical 

modeling to implement this approach and derive state-specific forecasts with uncertainty for 

deaths and for health service resource needs and compare these to available resources in the US.  

Methods 
The modeling approach in this study is divided into four components: (i) identification and 

processing of COVID-19 data; (ii) statistical model estimation for population death rates as a 

function of time since the death rate exceeds a threshold in a location; (iii) predicting time to 

exceed a given population death threshold in states early in the pandemic; and (iv) modeling 

health service utilization as a function of deaths. 

 

Data identification and processing 
Local government, national government, and WHO websites21–25 were used to identify data on 

confirmed COVID-19 deaths by day at the first administrative level (state or province, hereafter 

“admin 1”). Government declarations were used to identify the day different jurisdictions 

implemented various social distancing policies (stay-at-home or shelter-in-place orders, school 

closures, closures of non-essential services focused on bars and restaurants, and the deployment 

of severe travel restrictions) following the New Zealand government schema.26 Data on timings 

of interventions were compiled by checking national and state governmental websites, executive 

orders, and newly initiated COVID-19 laws. Data on licensed bed and ICU capacity and average 

annual utilization by state were obtained from the American Hospital Association.27 We 

estimated ICU utilization rates by multiplying total bed utilization rates by the ratio of ICU bed 

utilization rates over total bed utilization rates from a published study.28 Observed COVID-19 

utilization data were obtained for Italy21 and the United States,29 providing information on 

inpatient and ICU use. Data from China30 were used to approximate inpatient and ICU use by 

assuming that severe patients were hospitalized and critical patients required an ICU stay. Other 

parameters were sourced from the scientific literature and an analysis of available patient data.31 

Age-specific data on the relative population death rate by age are available from China,30 Italy,32 

Korea,33 and the US29 and show a strong relationship with age (Figure 1).   

 

Using the average observed relationship between the population death rate and age, data from 

different locations can be standardized to the age structure using indirect standardization. For the 

estimation of statistical models for the population death rate, only admin 1 locations with an 

observed death rate greater than 0.31 per million (e-15) were used. This threshold was selected 

by testing which threshold minimized the variance of the slope of the death rate across locations 

in subsequent days.   

  

A covariate of days with expected exponential growth in the cumulative death rate was created 

using information on the number of days after the death rate exceeded 0.31 per million to the day 

when 4 different social distancing measures were mandated by local and national government: 

school closures, non-essential business closures including bars and restaurants, stay-at-home 
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recommendations, and travel restrictions including public transport closures. Days with 1 

measure were counted as 0.67 equivalents, days with 2 measures as 0.334 equivalents and with 3 

or 4 measures as 0. For states that have not yet implemented all of the closure measures, we 

assumed that the remaining measures will be put in place within 1 week. This lag between 

reaching a threshold death rate and implementing more aggressive social distancing was 

combined with the observed period of exponential growth in the cumulative death rate seen in 

Wuhan after Level 4 social distancing was implemented, adjusted for the median time from 

incidence to death. For ease of interpretation of statistical coefficients, this covariate was 

normalized so the value for Wuhan was 1.  

 

Statistical model for the cumulative death rate 
We developed a curve-fitting tool to fit a nonlinear mixed effects model to the available admin 1 
cumulative death data. The cumulative death rate for each location is assumed to follow a 
parametrized Gaussian error function:  

 
where the function  is the Gaussian error function (written explicitly above), p controls the 
maximum death rate at each location, t is the time since death rate exceeded 1e-15, ß (beta) is a 
location-specific inflection point (time at which rate of increase of the death rate is maximum), 
and α (alpha) is a location-specific growth parameter. Other sigmoidal functional forms 
(alternatives to ) were considered but did not fit the data as well. Data were fit to the log of the 
death rate in the available data, using an optimization framework described in the appendix.  
 
We ensembled two types of models to produce the estimates. We either parametrized the level 
parameter p or the time-axis shift parameter beta to depend on a covariate based on time from 
when the initial death rate exceeds 1e-15 to the implementation of social distancing. The value of 
the covariate multipliers in each type of model was assumed to closely follow the fit obtained 
from data from Wuhan, which is the time series to reach a stable state in the training dataset. To 
be specific, the generalizable information from Wuhan was the impact that social distancing had 
on maximum death rate and time to reach the inflection point. For each type of model, we both 
considered ‘short-range’ and ‘long-range’ variants, to explain existing data and forecast long-
term trends, respectively. In the former case, covariate multipliers could deviate from those fit to 
Wuhan, while in the latter, the data from Wuhan had a larger impact on the final covariate 
multiplier. At the draw level, we linearly interpolate between the models as we go from times 
where we have collected data already to long-term forecasts. Specifically, we take the weighted 
combination of the daily increment of the log death rates from these models, with the weight 
linearly transitioning from short-range to long-range. The two remaining parameters (not 
modeled using covariates) were allowed to vary among locations to explain location-specific 
data.  
 
Uncertainty in the model estimates is driven by two components: (1) uncertainty from fixed 
effect estimation and (2) uncertainty from random effects, with the latter dominant because of 
the high variation between locations. Uncertainty of fixed effects is estimated using asymptotic 
statistics derived from the likelihood. In every model, we estimated location-specific parameters 
or multipliers, and therefore used the empirical variance-covariance matrix of these parameters 
as a prior for location-specific fit. Posterior uncertainty within each location was then obtained 
using a standard asymptotic approximation at that location. Once we estimated total uncertainty 
by location at the draw level, overall uncertainty was then obtained by aggregation of draws. The 
dataset age-standardized to the age-structure of California is shown in Figure 2.    

CurveFit Tool for Covid-19 Model Estimation

A bstract

This Appendix gives details for the mathemat ical and stat ist ical models and fit t ing procedure
used to obtain the est imates for the Covid-19 death rates. The general model is summarized in
the int roduct ion, followed by addit ional details and specificat ions. The modeling framework is by
design extendable, as more data and tools become available.

1. Introduction

This appendix describes the curve-fit t ing package Cur veFi t developed to est imate death rates from
all available locat ions in order to allow forecasts and est imates to support planning and healthcare.

Cur veFi t supports customized parametrized curves that can be fit to data. We focused on
parametrized forms (in contrast to nonparametric inference, e.g. splines [3]) for several reasons:

• Parametric funct ions capture key signals from noisy data due to simple parametrizat ion.
• Parameters are interpretable, and can be modeled using covariates in a transparent way.
• Parametric forms allow for more stable inversion approaches, for current and future work.
• Parametric funct ions impose rigid assumpt ions that make forecast ing more stable.

For the Covid model, we considered sigmoidal shapes, described in Sect ion 2. The basic curve
lays the foundat ion for the analysis, while assumpt ions on noise and relat ionships between locat ions
are specified through the stat ist ical model, discussed in Sect ion 3. Assumpt ions and expert knowl-
edge can be communicated to the model through priors and constraints, detailed in Sect ion 4. All
est imat ion is carried out using an opt imizat ion procedure, described in Sect ion 5. Finally, posterior
uncertainty is est imated from the fits, as described in Sect ion 6. Current set t ings used to obtain
fits are summarized in Sect ion 7.

2. Functional Form for Covid-19

We considered several funct ional forms to model the death rate of the Covid-19 virus. Based on
both current ly available data, the log rate starts slowly, increases quickly, and then flat tens out
again as either social distancing or saturat ion goes into effect . This is the classic sigmoid shape.
We first t ried building the analysis using the sigmoidal funct ion

Figure 1. Expit function D (left) and ERF function D (right). The ERF function fits the available Covid-19 data better than Expit.

D (t ; α, β, p) = p

1 + exp(− α(t − β))

where p controls the level, β the shift , and α the growth. We quickly discovered that the ERF error
funct ion provided a bet ter fit to the data:

D (t ; α,β, p) = p

2
(Ψ(α(t − β)) = p

2
1 + 2

√
π

α ( t − β )

0
exp − τ

2
dτ

1
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Because of the unique high-intensity epidemic in the Life Care Kirkland facility in Washington 

state,34,35 we have modeled this facility separately from the general population – see the appendix 

for details. Furthermore, as our initial development of the model was focused on King and 

Snohomish counties in Washington state, we have also stratified these 2 counties from the rest of 

Washington state. In other words, for Washington state, we model 3 populations explicitly: (i) 

the Life Care Kirkland facility; (ii) the remainder of the King and Snohomish county population; 

and (iii) all other counties in Washington state. 

 

Time to threshold death rate  

Only 27 states have deaths greater than 0.31 per million (e-15) and were included in the model 

estimation along with data on 44 other admin 1 locations. For other US states, we estimated the 

expected time from the current case count to reach the threshold level for the population death 

rate model. Using the observed distribution of the time from each level of case count to the 

threshold death rate for all admin 1 locations with data, we estimated this distribution. We used 

the mean and standard deviation of days from a given case count to the threshold death rate to 

develop the probability distribution for the day each state will cross over the threshold death rate, 

and then we applied the death rate epidemic curve after crossing the threshold.    

 

Hospital service utilization microsimulation model 
From the projected death rates, we estimated hospital service utilization using an individual-level 

microsimulation model. We simulated deaths by age using the average age pattern from Italy, 

China, South Korea, and the US (Figure 1) due to the relatively small number of deaths included 

for the US (n = 46) and the fact that the US age pattern is likely biased toward older-age deaths 

due to the early nursing home outbreak in Washington state. For each simulated death, we 

estimated the date of admission using the median length of stay for deaths estimated from the 

global line list (10 days <75 years; 8 days 75+ years). Simulated individuals requiring admission 

who were discharged alive were generated using the age-specific ratio of admissions to death 

(Figure 3), based again on the average across Italy, China, and the US. The age-specific fraction 

of admissions requiring ICU care was based on data from the US (122 total ICU admissions over 

509 total admissions). The fraction of ICU admissions requiring invasive ventilation was 

estimated as 54% (total n = 104) based on 2 studies from China.36,37 To determine daily bed and 

ICU occupancy and ventilator use, we applied median lengths of stay of 12 days based on the 

analysis of available unit record data and 8 days for those admissions with ICU care.37 

Results 
By aggregating forecasts across states, we determined the overall trajectory of expected health 

care need in different categories and deaths, as shown in Figure 4. Demand for health services 

rapidly increases in the last week of March and first 2 weeks of April and then slowly declines 

through the rest of April and May, with demand continuing well into June. The shape of the 

curve reflects both the epidemic curves within each state and the staggered nature of the 

epidemic around the country. Daily deaths in the mean forecast exceed 2,300 by the second week 

of April. While peak demand will occur at the national level in the second week of April, this 

varies by state as shown in Figure 5. Peak demand will occur in the first half of April in about a 

third of states. This includes states like New York which have had early epidemics and a 
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corresponding sharp rise in deaths. In contrast, other states such as Washington State and 

California with early epidemics have experienced slower increases in deaths.  

  

Figure 6 shows aggregated excess demand for services above the capacity available currently in 

each state. Excess demand will be above 60,000 beds (64,175 [95% UI 7,977 to 251,059]) at the 

peak in the second week of April – about 7% of all hospital beds nationally. More concerning is 

the peak excess demand of more than 17,000 ICU beds (17,380 [95% UI 2,432 to 57,955]) – 

about a quarter of all ICU beds nationally. The upper bound of the 95% uncertainty intervals 

suggest the potential for a much more massive overload of the system, particularly amongst 

many patients needing ICU beds not having this level of care available. We have not been able to 

estimate current ventilator capacity; however, the number of ventilators implied by the peak 

(19,481 [95% UI 9,767 to 39,674]; Figure 4) also suggests potentially large gaps in availability 

of ventilators. Peak excess demand varies considerably by state; Figure 7 and 8 shows the peak 

% excess demand by state for total beds and ICU beds, respectively. Peak excess demand for 

total beds is particularly high in states such as New York, New Jersey, Connecticut, and 

Michigan. Peak excess demand for ICU beds is more of an issue across all states and is highest 

in the same set of states listed above as well as Louisiana, Missouri, Nevada, Vermont and 

Massachusetts.    

  

Figure 9 shows the expected cumulative death numbers with 95% uncertainty intervals. The 

average forecast suggests 81,114 deaths, but the range is large, from 38,242 to 162,106 deaths. 

The figure shows that uncertainty widens markedly as the peak of the epidemic approaches, 

given that the exact timing of the peak is uncertain. Based on our projections, the number of 

daily deaths in the US will likely drop below 10 deaths between May 31 and June 6 (Figure 10). 

The date at which the projected daily death rate drops below 0.3 per million by state varies from 

the first half of May to the first of July (Figure 11). Those states where the death rate drops early 

overlap considerably with those states with large peak excess demand.  

  

Results for each state are accessible through a visualization tool at 

http://covid19.healthdata.org/projections - the estimates presented in this tool will be continually 

updated as new data are incorporated and ultimately will supersede the results in this paper. 

Summary information on cumulative deaths, the date of peak demand, the peak demand, peak 

excess demand, and aggregate demand are provided for each US state in Table 1.   

 

Discussion 
This study has generated the first set of estimates of predicted health service utilization and 

deaths due to COVID-19 by day for the next 4 months for all US states, assuming that social 

distancing efforts will continue throughout the epidemic. The analysis shows large gaps between 

need for hospital services and available capacity, especially for inpatient and ICU beds. A similar 

or perhaps even greater gap for ventilators is also likely, but detailed state data on ventilator 

capacity is not available to directly estimate that gap. Uncertainty in the time course of the 

epidemic, its duration, and the peak of utilization and deaths is large this early in the epidemic. 

Given this, it is critical to update these projections as new data on deaths in the US are collected. 

Uncertainty will also be reduced as we gain more knowledge about the course of the epidemic in 

other countries, particularly in Europe, where countries such as Italy and Spain have a more 
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advanced epidemic than the US. A critical aspect to the size of the peak is when aggressive 

measures for social distancing are implemented in each state. Delays in implementing 

government-mandated social distancing will have an important effect on the resource gaps that 

states’ health systems will have to manage.  

 

Our estimates of excess demand suggest hospital systems will face difficult choices to continue 

providing high-quality care to their patients in need. This model was first developed for use by 

the UW Medicine system, and their practical experience provides insight into how it may be 

useful for planning purposes. From the perspective of planning for the 4 hospitals in the UW 

Medicine system, these projections immediately made apparent the need to rapidly build internal 

capacity. Strategies to do so included the suspension of elective and non-urgent surgeries and 

procedures, while supporting surge planning efforts and reconfiguration of medical/surgical and 

ICU beds across the system. This information also allowed us to more effectively engage UW 

Medicine leadership in clinician and staff workforce pooling and redeployment planning and 

trigger points while focusing efforts to seek and secure necessary personal protective equipment 

(PPE) and other equipment to close the identified gap. It also supported a proactive discussion 

regarding the potential shift from current standards of care to crisis standards of care, with the 

goal to do the most good for the greatest number in the setting of limited resources.  

 

There are a variety of options available to deal with the situation, some of which have already 

been implemented or are being implemented in Washington and New York. One option is to 

reduce non-COVID-19 patient use. State governments have cancelled elective procedures38–40 

(and many hospitals but not all have followed suit). However, this decision has significant 

financial implications for health systems, as elective procedures are a major source of revenue 

for hospitals.41 For example, in the UW Medicine system, non-COVID-19 utilization is down 

14% over a 2-week period since elective activity was reduced. Also, aggressive social distancing 

policies reduce not only the transmission of COVID-19 but will likely have the added benefit of 

reducing health care utilization due to other causes such as injuries. Reducing non-COVID-19 

demand alone will not be sufficient, and strategies to increase capacity are clearly needed. This 

includes setting up additional beds by repurposing unused operating rooms, pre- and post-

recovery rooms, procedural areas, medical and nursing staff quarters, and hallways. For example, 

in UW Medicine, the use of such strategies has enabled planning to increase bed capacity 

temporarily by 65%.   

 

Currently, one of the largest constraints on effective care may be the lack of ventilators. One 

supplement to ventilator capacity is using anesthesia machines freed up by deferring or 

cancelling elective surgeries. Other options go beyond the capacity or control of specific 

hospitals. The use of mobile military resources including the National Guard42–44 has the 

potential to address some capacity limitations, particularly given the differently timed epidemics 

across states. Other innovative strategies will need to be found, including the construction of 

temporary hospital facilities as was done in Wuhan,45 Washington state,46 and also New 

York.44,47   

 

In this study, we have quantified the potential gap in physical resources, but there is an even 

larger potential gap in human resources (HR). Expanding bed capacity beyond licensed bed 

capacity may require an even larger increase in the HR to provide care. The average annual bed-
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day utilization rate in the US is 66% and ranges from 54% (Idaho) to 80% (Connecticut) by state. 

Most US hospitals are staffed appropriately at their usual capacity utilization rate, and expanding 

even up to, but then potentially well beyond, licensed capacity will require finding substantial 

additional HR. Strategies include increasing overtime, training operating room and community 

clinic staff in inpatient care or physician specialties in COVID-19 patient care, rehiring recently 

separated workers, and the use of volunteers. For example, UW Medicine has been fortunate that 

clinical faculty time can be redirected from research and teaching to clinical care during the 

COVID-19 surge. Other hospitals may not have this same ability. The most concerning HR 

bottleneck identified for UW Medicine is for ICU nurses, for which there are very limited 

options for increasing capacity. In addition to HR, what should not be overlooked is the 

increased demand for supplies ranging from PPE, medication, and ventilator supplies to basics 

such as bed linen. Add to these the need to expand other infrastructure required to meet the 

COVID-19 surge, such as information technology (IT) for electronic medical records. The 

overall financial cost over a short period of time is likely to be enormous, particularly when 

juxtaposed against the substantial reductions in revenue due to the cancellation of elective 

procedures.  

 

The timing of the implementation of social distancing mandates may be a critical determinant of 

peak demand and cumulative deaths. For states that have not implemented 3 of 4 measures 

(school closures, closing non-essential services, shelter-in-place, and major travel restrictions), 

we have assumed that they will be implemented within 7 days, given the rapid adoption of these 

measures in nearly all states. At this point in the epidemic, we have had to make arbitrary 

assumptions in our model on the equivalency between implementing 1, 2, or 3 measures – and 

we have implicitly assumed that implementing 3 of 4 measures will be enough to follow a 

trajectory similar to Wuhan – but it is plausible that it requires all 4 measures. As more data 

accumulate, especially on the timing of deceleration of daily deaths, we may be able to 

empirically test which of these measures is more correlated with slowing the epidemic curve and 

reducing the ultimate death toll. Perhaps as important will be the question of adherence to social 

distancing mandates; it will take time to evaluate whether social distancing adherence is 

fundamentally different in the US compared to Wuhan. Even in Wuhan it was a full 27 days 

from implementation of social distancing to reaching the peak level of daily deaths. 

 

As data on the epidemics in each admin 1 unit accumulate, including data on health service 

utilization, we will derive important insights into the epidemic trajectories and health service 

demand. At this early stage, even 1 to 2 days’ more data for a state will improve the estimates of 

service need and expected deaths. Because of sparse US data for some aspects of health service 

utilization, we have used data from the US, Italy, and China. As more data on US treatment 

accumulate, further revisions will be able to more accurately reflect US practice patterns for 

COVID-19. For this reason, we will revise the model every day, providing an updated forecast 

for health service providers and the public.  

 

Any attempt to forecast the COVID-19 epidemic has many limitations. Only one location has 

had a generalized epidemic and has currently brought new cases to 0 or near 0, namely Wuhan. 

Many other locations, including all other provinces in China, have so far successfully contained 

transmission, preventing a general outbreak. Modeling for US states based on one completed 

epidemic, at least for the first wave, and many incomplete epidemics is intrinsically challenging. 
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The consequent main limitation of our study is that observed epidemic curves for COVID-19 

deaths define the likely trajectory for US states. In this study, we do include a covariate meant to 

capture the timing of social distancing measures to take into account that Wuhan implemented 4 

out of 4 social distancing measures within 6 days of reaching a threshold death rate of 0.31 per 

million. Our models explicitly take into account variation in age-structure, which is a key driver 

of all-age mortality. But these efforts at quantification do not take into account many other 

factors that may influence the epidemic trajectory: the prevalence of chronic lung disease, the 

prevalence of multi-morbidity, population density, use of public transport, and other factors that 

may influence the immune response. We also have not explicitly incorporated the effect of 

reduced quality of care due to stressed and overloaded health systems beyond what is captured in 

the data. For example, the higher mortality rate in Italy is likely in part due to policies around 

restricting invasive ventilation in the elderly. The model ensemble used does suggest that 

locations with faster increases in the death rate are likely to have more peak case load and 

cumulative deaths, but our uncertainty intervals are appropriately large.  

 

Conclusion 
 

COVID-19 is an extraordinary challenge to US health and the healthcare system. In this study, 

we forecast a huge excess of demand for hospital bed-days and ICU bed-days, especially in the 

second week of April. Our estimate of 81 thousand deaths in the US over the next 4 months is an 

alarming number, but this number could be substantially higher if excess demand for health 

system resources is not addressed and if social distancing policies are not vigorously 

implemented and enforced across all states. This planning model will hopefully provide an up-to-

date tool for improved hospital resource allocation.  
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State

Alabama

Cumulative Deaths

Alaska

Date of Peak Hospital Use

Arizona

Beds Used at Peak

Arkansas

ICU Beds Used at Peak

California

Ventilators Used at Peak

Colorado

Excess Bed Demand

Connecticut

Excess ICU Demand

Delaware

Cumulative Bed Days

District of Columbia

Cumulative ICU Days

Florida

Cumulative Ventilator Days

Georgia

Hawaii

Idaho

Illinois

Indiana
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Kentucky

Louisiana
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Maryland
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Michigan

Minnesota

Mississippi

Missouri

Montana

Nebraska

Nevada

New Hampshire

New Jersey

New Mexico

New York

North Carolina
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Oregon

Pennsylvania
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South Carolina
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Tennessee
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132 (66−207)
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65 (52−75)

139 (25−312)

51 (38−60)

423 (373−469)

1612 (1408−1864)

165 (137−203)

175 (94−355)

280 (46−654)

238 (79−456)

118 (87−138)

110 (24−256)

37 (28−44)

0 (0−0)

0 (0−0)

0 (0−0)

0 (0−0)

0 (0−11444)

0 (0−54)

1603 (0−5893)

29 (0−113)

0 (0−0)

0 (0−0)

2114 (0−9547)

114 (0−254)

0 (0−0)

0 (0−2593)

1973 (0−22167)

0 (0−0)

0 (0−0)

0 (0−0)

2013 (0−16118)

25 (0−157)

0 (0−3168)

5009 (0−23555)

10563 (0−41869)

0 (0−0)

0 (0−0)

2697 (0−23942)

0 (0−0)

0 (0−0)

1268 (0−8692)

9 (0−146)

9829 (1007−34593)

0 (0−31)

35301 (13855−109309)

686 (0−1519)

0 (0−0)

0 (0−0)

0 (0−0)

0 (0−390)

0 (0−0)

0 (0−74)

0 (0−0)

0 (0−0)

0 (0−0)

0 (0−0)

0 (0−0)

1420 (433−3343)

0 (0−1351)

0 (0−639)

0 (0−0)

0 (0−0)

0 (0−0)

93 (6−167)

27 (8−48)

334 (244−417)

0 (0−0)

325 (0−3794)

0 (0−193)

442 (114−1133)

72 (51−87)

22 (11−36)

0 (0−478)

1017 (39−2158)

122 (89−146)

37 (0−65)

260 (0−1573)

974 (0−4287)

107 (52−151)

39 (0−84)

0 (0−17)

1007 (310−3238)

106 (76−130)

79 (0−884)

1329 (76−4329)

2731 (807−8142)

266 (169−347)

0 (0−41)

1111 (0−4483)

37 (6−58)

0 (0−6)

380 (0−1576)

78 (45−101)

2371 (998−6411)

130 (83−165)

7254 (3771−19175)

657 (519−793)

0 (0−5)

143 (0−292)

0 (0−33)

13 (0−256)

492 (327−644)

79 (57−97)

0 (0−173)

21 (0−36)

154 (63−236)

727 (368−1206)

135 (83−205)

291 (139−623)

190 (0−881)

99 (0−500)

22 (0−59)

32 (0−299)

24 (8−38)

122930 (69537−180580)

18417 (8104−30667)

176047 (134332−221524)

73840 (40262−110228)

651881 (84753−1807008)

103530 (16353−262516)

80434 (26752−188243)

23911 (12621−36026)

13787 (7199−20964)

335283 (32340−900699)

354633 (116532−624314)

35824 (18058−54681)

41329 (20458−63118)

259637 (57195−606941)

259565 (67206−758821)

75241 (40903−111618)

69582 (35854−106570)

62720 (6799−174924)

223578 (101330−586716)

34909 (19103−51943)

92613 (8920−356207)

232779 (40191−723480)

425999 (152563−1120612)

134756 (76858−197954)

72166 (41957−105077)

311155 (43337−992220)

26198 (12146−41425)

45184 (22080−70619)

89067 (14114−281580)

34260 (17549−51898)

430475 (173471−1080824)

53736 (27359−81727)

1057788 (514026−2774647)

259776 (176831−350701)

16455 (7560−26041)

285835 (217010−361279)

94765 (70892−120433)

61463 (9509−143860)

316655 (241507−397108)

25360 (13488−37901)

82227 (8922−214743)

20364 (9108−32358)

165849 (116021−219815)

648770 (472173−848002)

68354 (38440−104047)

40503 (15971−83249)

167373 (16748−443608)

154707 (32073−293961)

47825 (21187−77858)

89330 (10867−208544)

14604 (6804−23575)

18274 (10010−27280)

2725 (1138−4652)

26189 (19779−33218)

10982 (5809−16672)

96897 (12272−271432)

15368 (2363−39285)

11971 (3886−28287)

3554 (1798−5475)

2051 (1029−3217)

49981 (4716−134771)

52603 (17041−93355)

5334 (2570−8296)

6143 (2916−9566)

38607 (8170−91565)

38578 (9630−113862)

11216 (5907−16946)

10354 (5112−16141)

9320 (978−26205)

33228 (15070−87685)

5194 (2734−7873)

13755 (1209−53899)

34637 (5739−109258)

63352 (21765−169288)

20043 (11113−29825)

10722 (6057−15856)

46290 (6131−148916)

3900 (1729−6295)

6724 (3165−10684)

13214 (2022−42379)

5090 (2498−7857)

64063 (25253−162147)

7993 (3900−12398)

157459 (75373−414490)

38593 (25905−52522)

2454 (1068−3977)

42521 (32020−54219)

14090 (10426−18081)

9139 (1372−21595)

47155 (35627−59710)

3776 (1927−5770)

12216 (1306−32153)

3031 (1281−4946)

24645 (16994−32967)

96270 (69161−127252)

10143 (5537−15686)

6023 (2320−12667)

24860 (2426−66459)

22987 (4705−44001)

7117 (2983−11787)

13284 (1567−31212)

2167 (963−3598)

9869 (5404−14740)

1473 (616−2528)

14145 (10643−17991)

5930 (3137−9010)

52336 (6603−146542)

8297 (1268−21206)

6465 (2096−15317)

1919 (965−2968)

1108 (555−1745)

27002 (2532−72958)

28409 (9168−50506)

2879 (1386−4494)

3318 (1568−5173)

20845 (4382−49321)

20833 (5199−61486)

6058 (3187−9165)

5592 (2757−8722)

5033 (522−14158)

17942 (8143−47252)

2804 (1473−4259)

7428 (653−29144)

18705 (3091−59024)

34204 (11753−91393)

10827 (5988−16133)

5790 (3261−8581)

24999 (3307−80425)

2106 (934−3409)

3631 (1708−5786)

7136 (1087−22925)

2750 (1345−4257)

34584 (13601−87453)

4315 (2108−6695)

85028 (40771−224139)

20839 (13975−28410)

1327 (573−2161)

22962 (17254−29328)

7609 (5610−9791)

4935 (737−11666)

25475 (19191−32383)

2039 (1047−3120)

6596 (702−17398)

1636 (687−2694)

13308 (9170−17834)

51986 (37159−68919)

5478 (2981−8498)

3252 (1252−6807)

13424 (1306−35934)

12415 (2531−23819)

3844 (1605−6363)

7174 (833−16899)

1170 (513−1952)
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