
CurveFit Tool for Covid-19 Model Estimation

Abstract

This Appendix gives details for the mathematical and statistical models and fitting procedure
used to obtain the estimates for the Covid-19 death rates. The general model is summarized in
the introduction, followed by additional details and specifications. The modeling framework is by
design extendable, as more data and tools become available.

1. Introduction
This appendix describes the curve-fitting package CurveFit developed to estimate death rates from
all available locations in order to allow forecasts and estimates to support planning and healthcare.

CurveFit supports customized parametrized curves that can be fit to data. We focused on
parametrized forms (in contrast to nonparametric inference, e.g. splines [3]) for several reasons:

• Parametric functions capture key signals from noisy data due to simple parametrization.
• Parameters are interpretable, and can be modeled using covariates in a transparent way.
• Parametric forms allow for more stable inversion approaches, for current and future work.
• Parametric functions impose rigid assumptions that make forecasting more stable.

For the Covid model, we considered sigmoidal shapes, described in Section 2. The basic curve
lays the foundation for the analysis, while assumptions on noise and relationships between locations
are specified through the statistical model, discussed in Section 3. Assumptions and expert knowl-
edge can be communicated to the model through priors and constraints, detailed in Section 4. All
estimation is carried out using an optimization procedure, described in Section 5. Finally, posterior
uncertainty is estimated from the fits, as described in Section 6. Current settings used to obtain
fits are summarized in Section 7.

2. Functional Form for Covid-19
We considered several functional forms to model the death rate of the Covid-19 virus. Based on
both currently available data, the log rate starts slowly, increases quickly, and then flattens out
again as either social distancing or saturation goes into effect. This is the classic sigmoid shape.
We first tried building the analysis using the sigmoidal function

Figure 1. Expit function D̃ (left) and ERF function D (right). The ERF function fits the available Covid-19 data better than Expit.

D̃(t;α, β, p) = p

1 + exp(−α(t− β))

where p controls the level, β the shift, and α the growth. We quickly discovered that the ERF error
function provided a better fit to the data:

D(t;α, β, p) = p

2 (Ψ(α(t− β)) = p

2

(
1 + 2√

π

∫ α(t−β)

0
exp
(
−τ2) dτ)

1

Preprint submitted to MedRxiv 03.25.2020- tracking ID MEDRXIV/2020/043752



CurveFit allows the user to specify an arbitrary functional form, so that other models could be
considered as more data becomes available. The tool also allows fitting in four spaces:
• Log space: log (data) vs. log(D)
• Linear space: data vs. D
• Derivative of log space: increments of log data vs. derivative of log(D)
• Derivative space linear space: increments of data vs. derivative of D.

For the current model we fit in log space, that is, log of the observations to the log of D. For the
D functional form, the three main parameters are:
• Level: p controls the maximum asymptotic level that the rate can reach
• Slope: α controls the speed of the infection
• Inflection: β is the time at which the rate of change of D is maximal.
Since data are available across multiple locations, we have to consider the relationships of these

parameters by location and covariates. These specifications are discussed in the next section.

3. Statistical Specification
Statistical assumptions link parameters together across locations. CurveFit allows any parameter
to be specified using both a link function and covariates using the generalized linear modeling
framework [2]:

parameter = link(covariate ∗multiplier + random effect).
For the Covid-19 model, the only link functions that are used are the identity (for β) and the
exponential function to ensures the slope α and the level p are non-negative.

The ability to parametrize by covariates is a key functionality of the model. For example, the
only covariate used in the death rate model is the duration between a threshold of the rate and social
distancing policy, and this covariate drives the inference of the covariate multiplier for the inflection
point or the level in the models we consider for the analysis. As more data becomes available,
CurveFit can be used to incorporate additional understanding to further link the covariates.

To finish the specification, we give to examples of the models we consider. For the first example,
we let the covariate link the inflection points βi across locations:

log(yti) = log(D(t;AlphaLinki,BetaLinki,PLinki)) + εti

AlphaLinki = exp(intercept + random effect)
BetaLinki = γCovariate + random effect

PLinki = exp(intercept + random effect)

(1)

In the second example, we consider the level p linked through the covariate and the specification
changes to

log(yti) = log(D(t;AlphaLinki,BetaLinki,PLinki)) + εti

AlphaLinki = exp(intercept + random effect)
BetaLinki = intercept + random effect

PLinki = γCovariate + random effect

(2)

Estimating this model requires solving for the value of the γ multiplier along with intercepts and
effects given statistics on errors.

4. Specifying Priors and Constraints
The CurveFit tool lets the user specify prior knowledge using two interfaces: Bayesian priors and
constraints. Both types of information can be used to inform estimation of all parameters and
covariate multipliers.

Constraints are assumed to be simple bound constraints, that is, we can specify

lower bound ≤ parameter ≤ upper bound

for any parameter we wish to infer. Since the functional form D is highly nonlinear, constraints
are particularly useful to stabilize the numerical solution of the inference problem. Constraints can
also be thought of as ‘uniform priors’, that is, they require parameters to stay in a certain range,
but do not prescribe any particular value in that range.

At this point CurveFit assumes that prior distributions are Gaussian N(µ, σ2) where the pa-
rameter µ encodes the prior belief, while σ2 specifies confidence in this belief.

2

Preprint submitted to MedRxiv 03.25.2020- tracking ID MEDRXIV/2020/043752



5. Optimization Procedure
The final optimization problem includes the GLM specifications such as (1) or (2), along with
Gaussian priors and bound constraints. The fitting problem in the current version of CurveFit is
thus a bound-constrained nonlinear least squares problem.

To solve this optimization problem, we use the L-BFGS-B algorithm [4], implemented in SciPy1.
The L-BFGS-B algorithm requires derivatives of the objective function. We use numerical

differentiation, implemented using the complex step method, to compute these derivatives for any
user-specified functional form [1].

Since the curves are highly nonlinear, the nonlinear least squares problem is highly nonconvex,
and therefore initialization is important. We initialize values of parameters to their location-specific
fits, and then run the full optimization model as specified in Section 3 from this starting point.

6. Uncertainty Quantification
The CurveFit tool provides draws for individual locations used in the model estimation. Location-
specific samples then inform aggregate uncertainty of downstream estimates.

We partition the uncertainty as coming from two sources: fixed effects and random effects.
Fixed effects in the model are averages of parameters across locations, and covariate multipliers.
Random effects are specific to location.

6.1. Fixed Effects
To estimate the fixed effect uncertainty, we use asymptotic statistics.

For any estimator obtained by solving a nonlinear least squares problem

θ̂ = arg min
θ

:= 1
2σ2 ‖y − f(θ;X)‖2Σ−1

we can approximate posterior covariance using the inverse of the Fisher information matrix:

I(θ) = V [∇M(θ)] = V [JTθ Σ−1(f(θ;X)− y)] = JTθ Σ−1Jθ

where
Jθ̂ := ∇θf(θ;X)|θ=θ̂ (3)

is the Jacobian of f(θ) evaluated at the computed estimate θ̂. We therefore get

V (θ̂) =I(θ̂)−1 = (JTθ̂ Σ−1Jθ̂)
−1 (4)

6.2. Random Effects
To estimate the variance at each location, we first obtain an empirical variance-covariance matrix
using the random effect fits by location, denoted by V0.

Given a location with no observations, its uncertainty will be driven by V0, which captures the
variation across location. However, if a location has data, we can obtain a location-specific fit and
uncertainty estimates using the same technique as in Section 6.1 but applied to this location. That
is, with the prior V0, the likelihood changes to

θ̂i = arg min
θ

:= 1
2θ

TV −1
0 θ + 1

2σ2 ‖yi − fi(θ;Xi)‖
2
Σ−1

i

and then we have
Vi(θ̂) =((Ji)Tθ̂ Σ−1

i (Ji)θ̂ + V −1
0 )−1. (5)

7. Settings Used for Results
To develop the initial results in the current manuscript, we used four main models fit with the
CurveFit tool.

• Short-range, with covariate on βj (1)
• Long-range, with covariate on βj (1)
• Short-range, with covariate on pj (2)

1https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html

3

Preprint submitted to MedRxiv 03.25.2020- tracking ID MEDRXIV/2020/043752



• Long-range, with covariate on pj (2)

In all models, standard errors were chosen to decrease linearly for later observations compared
to earlier observations, since they reflected cumulative rates and were more accurate.

Prior information was input to the model mainly through the covariate multiplier γ. At a high
level, for short-range models the multipliers for different locations were allowed to deviate from
mean value (estimated using Wuhan data), while for long-range models the Wuhan value was a
main driver for the forecasts. Specifically, the variance of the location-specific multipliers was 10
times as high for the short-term model as for the long-term. All random effects corresponding
to location specific estimates were modeled as Gaussian. For all models, constraints were placed
on inflection point values to occur between t = 20 and t = 80 across all locations in the training
dataset to stabilize the fit. For both short-range and long-range models, draws are created using
ensembles for the model types (1) and (2).

To create the final draws, we used simple linear interpolation in log increment space:

increment of log D = λ(t)[increment of log D (long)] + (1− λ(t))[increment of log D (short)]

where
λ(t) = min

(
1,max

(
0, t− ts
te − ts

))
.

where ts and te are start and end times for the period. The resulting draw is then constructed by
aggregating the joint increments over (ts, te).

Moving forward, the most up-to-date source for model specifications, settings, and options in
the tool will be found in the documentation of CurveFit tool.

References
[1] J. R. Martins, P. Sturdza, and J. J. Alonso. The complex-step derivative approximation. ACM

Transactions on Mathematical Software (TOMS), 29(3):245–262, 2003.
[2] J. A. Nelder and R. W. Wedderburn. Generalized linear models. Journal of the Royal Statistical

Society: Series A (General), 135(3):370–384, 1972.
[3] P. Zheng, A. Y. Aravkin, R. Barber, R. J. Sorensen, and C. J. Murray. Trimmed constrained

mixed effects models: Formulations and algorithms. arXiv preprint arXiv:1909.10700, 2019.
[4] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. Algorithm 778: L-bfgs-b: Fortran subroutines

for large-scale bound-constrained optimization. ACM Transactions on Mathematical Software
(TOMS), 23(4):550–560, 1997.

4

Preprint submitted to MedRxiv 03.25.2020- tracking ID MEDRXIV/2020/043752


	Introduction
	Functional Form for Covid-19
	Statistical Specification
	Specifying Priors and Constraints
	Optimization Procedure
	Uncertainty Quantification
	Fixed Effects
	Random Effects

	Settings Used for Results



