COVID-19 Results Briefing

Global

June 9, 2022

This document contains summary information on the latest projections from the IHME model on COVID-19 globally. The model was run on June 8, 2022, with data through June 6, 2022.

While global reported cases and deaths continue to decline, secondary Omicron surges are taking place in many parts of Latin America, sub-Saharan Africa, multiple US states, Portugal, parts of India, and the Gulf. Given the experience in Europe and the Northeast of the US, these secondary Omicron waves driven by behavioral relaxation, declining mask use, and Omicron sub-variants are likely to last a few weeks. We expect that global infections, cases, and hospitalizations should increase somewhat, peak again in June, and then decline. Later in the year, as the Northern Hemisphere fall and winter approach, we expect to see an increase in Omicron transmission.

With comparatively high levels of global immunity due to vaccination and past infection combined with rising antiviral access, the impact of Omicron transmission in terms of deaths should be around 125,000 additional deaths by October 1. These forecasts can be substantially altered by several factors. First, China has been effectively following a zero-COVID strategy through strict lockdowns. We assume this will continue at least through October 1. When the zero-COVID strategy is loosened at some point this year, we expect considerable transmission and mortality to occur, especially in the over-80 population. Second, the BA.5-associated surge in Portugal and some regions of Spain warrants careful monitoring. The increase has been much larger than other secondary Omicron waves in Europe and has been associated with increasing numbers of deaths as well. As in many places, death totals likely include incidental deaths, namely deaths with but not due to COVID-19. Third, forecasts can be substantially worsened if a new variant with immune escape and increased severity emerges.

The current state of the pandemic highlights some key strategies to pursue. First, while many jurisdictions decrease their focus on COVID-19, it is important to maintain global surveillance. If a new variant with immune escape and increased severity emerges, then early detection could save lives. Second, as social distancing mandates are used less often, mask use declines, and the rate of new vaccinations has essentially stalled, the main line of defense against a new variant with immune escape and increased severity will be antivirals. Every effort should be made to ensure sufficient supplies are available in all countries to treat high-risk populations if such a new variant emerges. Third, fourth boosters will also be an important strategy for those who are willing and able to receive them. The key question will be the timing of wider use of a fourth dose given immunity from vaccination wanes at a considerable rate.

Current situation

- Estimated daily infections in the last week increased to 8.3 million per day on average compared to 7.2 million the week before (Figure 1.1).
• Estimated daily hospital census in the last week (through June 6) increased to 151,000 per day on average compared to 149,000 the week before.

• Daily reported cases in the last week decreased to 446,000 per day on average compared to 486,000 the week before (Figure 2.1).

• Reported deaths due to COVID-19 in the last week decreased to 1,400 per day on average compared to 1,500 the week before (Figure 3.1).

• Total deaths due to COVID-19 in the last week decreased to 2,200 per day on average compared to 2,500 the week before (Figure 3.1). This makes COVID-19 the number 18 cause of death globally this week (Table 1). Estimated total daily deaths due to COVID-19 in the past week were 1.6 times larger than the reported number of deaths.

• The daily rate of reported deaths due to COVID-19 is greater than 4 per million in two locations and one subnational location (Figure 4.1).

• The daily rate of total deaths due to COVID-19 is greater than 4 per million in 10 locations and nine subnational locations (Figure 4.2).

• We estimate that 67% of people globally have been infected at least once as of June 6 (Figure 6.1).

• Effective R, computed using cases, hospitalizations, and deaths, is greater than 1 in 100 locations and 102 subnational locations (Figure 7.1).

• The infection-detection rate globally was close to 7% on June 6 (Figure 8.1).

• Based on the GISAID and various national databases, combined with our variant spread model, we estimate the current prevalence of variants of concern (Figures 9.1–9.5). Omicron remains dominant globally.

Trends in drivers of transmission

• Mobility last week was 10% higher than the pre-COVID-19 baseline (Figure 11.1). Mobility was lower than 15% of baseline in 11 locations and 13 subnational locations (Figure 12.1).

• As of June 5, in the COVID-19 Trends and Impact Survey, 33% of people self-reported that they always wore a mask when leaving their home compared to 35% the previous week (Figure 13.1).

• There were 262 diagnostic tests per 100,000 people on June 6 (Figure 15.1).

• As of June 6, 84 locations and 170 subnational locations have reached 70% or more of the population who have received at least one vaccine dose, and 66 locations and 138 subnational locations have reached 70% or more of the population who are fully vaccinated (Figures 17.1 and 17.2). 67% of people globally have received at least one vaccine dose, and 61% are fully vaccinated.
• Globally, 83.4% of the population that is 12 years and older say they would accept a vaccine for COVID-19 (Figure 18.1). The proportion of the population who are open to receiving a COVID-19 vaccine ranges from 14% in Turkmenistan to 100% in Tripura, India (Figure 19.1). Note that vaccine acceptance is calculated using survey data from the 18+ population.

• As of April 25, 2022, 3.1% of the population globally say they would accept a vaccine for COVID-19 but have not yet been vaccinated.

• In our current reference scenario, we expect that 5.2 billion people will be vaccinated with at least one dose by October 1 (Figure 21.1). We expect that 63% of the population will be fully vaccinated by October 1.

Projections and scenarios

We produce three scenarios when projecting COVID-19. The reference scenario is our forecast of what we think is most likely to happen:

• Vaccines are distributed at the expected pace. Brand- and variant-specific vaccine efficacy is updated using the latest available information from peer-reviewed publications and other reports.

• Future mask use will decline to 50% of the minimum level it reached between January 1, 2021, and May 1, 2022. This decline begins after the last observed data point in each location and transitions linearly to the minimum over a period of six weeks.

• Mobility increases as vaccine coverage increases.

• 80% of those who have had two doses of vaccine (or one dose for Johnson & Johnson) receive a third dose at six months after their second dose.

• Antiviral utilization for COVID-19 risk prevention in high-risk populations will reach 80% between June 15, 2022, and July 31, 2022. This applies in high-income countries, but not low- and middle-income countries, and this rollout assumption follows a similar pattern to global vaccine rollouts.

The 80% mask use scenario makes all the same assumptions as the reference scenario but assumes all locations reach 80% mask use within seven days. If a location currently has higher than 80% use, mask use remains at the current level.

The antiviral access scenario makes all the same assumptions as the reference scenario but assumes globally distributed antivirals and extends coverage to all low- and middle-income countries between July 15, 2022, and September 15, 2022.

Infections

• Daily estimated infections in the reference scenario will rise to 8,686,470 by June 9, 2022 (Figure 23.1).

• Daily estimated infections in the 80% mask use scenario will decline to 1,426,900 by August 27, 2022 (Figure 23.1).
• Daily estimated infections in the antiviral access scenario will rise to 8,686,470 by June 9, 2022 (Figure 23.1).

Cases

• Daily estimated cases in the reference scenario will decline to 178,720 by September 11, 2022 (Figure 23.2).

• Daily estimated cases in the 80% mask use scenario will decline to 38,890 by September 12, 2022 (Figure 23.2).

Deaths

• In our reference scenario, our model projects 7,008,000 cumulative reported deaths due to COVID-19 on October 1. This represents 124,000 additional deaths from June 6 to October 1. Daily reported COVID-19 deaths in the reference scenario will rise to 1,440 by June 21, 2022 (Figure 23.4).

• Under our reference scenario, our model projects 17,537,000 cumulative total deaths due to COVID-19 on October 1. This represents 322,000 additional deaths from June 6 to October 1 (Figure 23.5).

• In our 80% mask use scenario, our model projects 6,952,000 cumulative reported deaths due to COVID-19 on October 1. This represents 68,000 additional deaths from June 6 to October 1. Daily reported COVID-19 deaths in the 80% mask use scenario will rise to 1,420 by June 19, 2022 (Figure 23.4).
Model updates

This month, we have made three alterations to our reference assumptions in the model. First, we expect the recent rollout of Paxlovid treatments in high-income settings to greatly reduce severe disease and death outcomes. We do not currently have data to inform levels of coverage, so we have introduced a simple scale-up model that assumes individuals over the age of 65 will be targeted for treatment, and access to treatment among this group will rise from 0% on June 15, 2022, to a maximum of 80% on July 31, 2022. Clinical trials suggest a Paxlovid provides an 88% reduction in the risk of hospitalization and death among people treated within five days of symptom onset. We make a slightly more conservative assumption that the hospitalization and death rates will be reduced by 80% to account for variations in treatment timing and patient adherence in a real-world setting.

Second, survey data suggest that mask use is continuing to decline in most world locations. We have updated our reference mask use forecast to introduce a linear decline in mask use prevalence down to 50% of the minimum use level between January 1, 2021, and May 1, 2022, in each location. We have kept our previous assumption that mask use will continue at current levels in China, South Korea, Japan, Taiwan, Singapore, and South Africa, as current data do not suggest an imminent reduction.

Finally, similar to mask use, observed mobility continues to increase in much of the world. We have replaced our previous reference scenario that assumed current levels of mobility would persist indefinitely with a scenario that has mobility increase to match vaccine coverage. We continue to produce three scenarios when projecting COVID-19, but we have replaced the increased booster coverage scenario with an antiviral access scenario that examines the impact of more equitable distribution of Paxlovid to low- and middle-income countries (LMICs).
Figure 1.1: Daily COVID-19 hospital census and estimated infections

Figure 2.1: Reported daily COVID-19 cases, moving average
Table 1: Ranking of total deaths due to COVID-19 among the leading causes of mortality this week, assuming uniform deaths of non-COVID causes throughout the year

<table>
<thead>
<tr>
<th>Cause name</th>
<th>Weekly deaths</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic heart disease</td>
<td>175,727</td>
<td>1</td>
</tr>
<tr>
<td>Stroke</td>
<td>126,014</td>
<td>2</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease</td>
<td>63,089</td>
<td>3</td>
</tr>
<tr>
<td>Lower respiratory infections</td>
<td>47,946</td>
<td>4</td>
</tr>
<tr>
<td>Tracheal, bronchus, and lung cancer</td>
<td>39,282</td>
<td>5</td>
</tr>
<tr>
<td>Neonatal disorders</td>
<td>36,201</td>
<td>6</td>
</tr>
<tr>
<td>Alzheimer’s disease and other dementias</td>
<td>31,217</td>
<td>7</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>29,830</td>
<td>8</td>
</tr>
<tr>
<td>Diarrheal diseases</td>
<td>29,509</td>
<td>9</td>
</tr>
<tr>
<td>Cirrhosis and other chronic liver diseases</td>
<td>28,308</td>
<td>10</td>
</tr>
<tr>
<td>COVID-19</td>
<td>15,557</td>
<td>18</td>
</tr>
</tbody>
</table>

Figure 3.1: Smoothed trend estimate of daily COVID-19 deaths
Daily COVID-19 death rate per 1 million on June 6, 2022

Figure 4.1: Daily reported COVID-19 death rate per 1 million

Figure 4.2: Daily total COVID-19 death rate per 1 million
Cumulative COVID-19 deaths per 100,000 on June 6, 2022

Figure 5.1: Reported cumulative COVID-19 deaths per 100,000

Figure 5.2: Total cumulative COVID-19 deaths per 100,000
Figure 6.1: Estimated percent of the population infected with COVID-19 on June 6, 2022

Figure 7.1: Mean effective R on May 26, 2022. Effective R less than 1 means that transmission should decline, all other things being held the same. The estimate of effective R is based on the combined analysis of deaths, case reporting, and hospitalizations where available. Current reported cases reflect infections 11-13 days prior, so estimates of effective R can only be made for the recent past.
Figure 8.1: Percent of estimated COVID-19 infections detected. This is estimated as the ratio of reported daily COVID-19 cases to estimated daily COVID-19 infections based on the SEIR disease transmission model. Due to measurement errors in cases and testing rates, the infection-detection rate can exceed 100% at particular points in time.
Estimated percent of circulating SARS-CoV-2 for primary variant families on June 6, 2022

Figure 9.1: Estimated percent of new infections that are Alpha variant

Figure 9.2: Estimated percent of new infections that are Beta variant
Figure 9.3: Estimated percent of new infections that are Delta variant

Figure 9.4: Estimated percent of new infections that are Gamma variant
Figure 9.5: Estimated percent of new infections that are Omicron variant

0% 1−9% 10−24% 25−49% 50−74% 75−89% 90−100%
Figure 10.1: Infection-fatality rate on June 6, 2022. This is estimated as the ratio of COVID-19 deaths to estimated daily COVID-19 infections.
Figure 11.1: Trend in mobility as measured through smartphone app use, compared to January 2020 baseline.
Figure 12.1: Mobility level as measured through smartphone app use, compared to January 2020 baseline (percent) on June 6, 2022
Figure 13.1: Trend in the proportion of the population reporting always wearing a mask when leaving home

![Graph showing the trend in the proportion of the population reporting always wearing a mask when leaving home from February 2020 to June 2022. The graph includes data for Global, Italy, United Kingdom, United States of America, and Brazil.]

Figure 14.1: Proportion of the population reporting always wearing a mask when leaving home on June 6, 2022

![Map showing the proportion of the population reporting always wearing a mask when leaving home on June 6, 2022, with a color scale indicating percentages from 0% to 100%.]
Figure 15.1: Trend in COVID-19 diagnostic tests per 100,000 people

![Graph showing the trend in COVID-19 diagnostic tests per 100,000 people from February 2020 to June 2022. The graph includes data for Global, Italy, United Kingdom, United States of America, and Brazil. The y-axis represents the number of tests per 100,000 population, and the x-axis represents the months from February 2020 to June 2022.](image)

Figure 16.1: COVID-19 diagnostic tests per 100,000 people on June 6, 2022

![World map showing the distribution of COVID-19 diagnostic tests per 100,000 people as of June 6, 2022. The colors represent different test ranges, with a legend indicating the test per 100,000 population.](image)
Table 3: Estimates of vaccine effectiveness for specific vaccines used in the model at preventing severe disease and infection. We use data from clinical trials directly, where available, and make estimates otherwise. More information can be found on our [website](https://covid19.healthdata.org).

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Ancestral</th>
<th>Alpha</th>
<th>Beta</th>
<th>Gamma</th>
<th>Delta</th>
<th>Omicron</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Severe disease</td>
<td>Infection</td>
<td>Severe disease</td>
<td>Infection</td>
<td>Severe disease</td>
<td>Infection</td>
</tr>
<tr>
<td>AstraZeneca</td>
<td>94%</td>
<td>63%</td>
<td>94%</td>
<td>63%</td>
<td>94%</td>
<td>69%</td>
</tr>
<tr>
<td>CanSino</td>
<td>60%</td>
<td>62%</td>
<td>66%</td>
<td>62%</td>
<td>64%</td>
<td>61%</td>
</tr>
<tr>
<td>CoronaVac</td>
<td>50%</td>
<td>47%</td>
<td>50%</td>
<td>47%</td>
<td>49%</td>
<td>46%</td>
</tr>
<tr>
<td>Covaxin</td>
<td>78%</td>
<td>73%</td>
<td>78%</td>
<td>73%</td>
<td>76%</td>
<td>72%</td>
</tr>
<tr>
<td>Johnson & Johnson</td>
<td>86%</td>
<td>72%</td>
<td>86%</td>
<td>72%</td>
<td>76%</td>
<td>64%</td>
</tr>
<tr>
<td>Moderna</td>
<td>97%</td>
<td>92%</td>
<td>97%</td>
<td>92%</td>
<td>97%</td>
<td>91%</td>
</tr>
<tr>
<td>Novavax</td>
<td>89%</td>
<td>83%</td>
<td>89%</td>
<td>83%</td>
<td>86%</td>
<td>82%</td>
</tr>
<tr>
<td>Pfizer/BioNTech</td>
<td>95%</td>
<td>86%</td>
<td>95%</td>
<td>86%</td>
<td>95%</td>
<td>84%</td>
</tr>
<tr>
<td>Sinopharm</td>
<td>73%</td>
<td>68%</td>
<td>73%</td>
<td>68%</td>
<td>71%</td>
<td>67%</td>
</tr>
<tr>
<td>Sputnik-V</td>
<td>92%</td>
<td>86%</td>
<td>92%</td>
<td>86%</td>
<td>89%</td>
<td>85%</td>
</tr>
<tr>
<td>Other vaccines</td>
<td>75%</td>
<td>70%</td>
<td>75%</td>
<td>70%</td>
<td>73%</td>
<td>69%</td>
</tr>
<tr>
<td>Other vaccines (mRNA)</td>
<td>91%</td>
<td>86%</td>
<td>91%</td>
<td>86%</td>
<td>88%</td>
<td>85%</td>
</tr>
</tbody>
</table>
Percent of the population having received at least one dose (17.1) and fully vaccinated against SARS-CoV-2 (17.2) by June 6, 2022

Figure 17.1: Percent of the population having received one dose of a COVID-19 vaccine

Figure 17.2: Percent of the population fully vaccinated against SARS-CoV-2
Figure 18.1: Trend in the estimated proportion of the population that is 12 years and older that has been vaccinated or would definitely receive the COVID-19 vaccine if available. Note that vaccine acceptance is calculated using survey data from the 18+ population.

Figure 19.1: Estimated proportion of the population that is 12 years and older that has been vaccinated or would definitely receive the COVID-19 vaccine if available. Note that vaccine acceptance is calculated using survey data from the 18+ population.
Figure 20.1: Estimated proportion of the total population that is not vaccinated but willing to be vaccinated as of May 30, 2022
Figure 21.1: Percent of people who receive at least one dose of a COVID-19 vaccine and those who are fully vaccinated

![Graph showing percent of population receiving at least one dose of a COVID-19 vaccine and fully vaccinated from November 20 to November 22.]

Figure 22.1: Percent of people who are immune to Delta or Omicron. Immunity is based on protection due to prior vaccination and infection(s). Moreover, variant-specific immunity is also based on variant-variant specific protection.

![Graph showing percent of population immune to Delta and Omicron from January 21 to November 22.]

covid19.healthdata.org Institute for Health Metrics and Evaluation
Projections and scenarios

Figure 23.1: Daily COVID-19 infections until October 01, 2022 for three scenarios

Figure 23.2: Daily COVID-19 reported cases until October 01, 2022 for three scenarios
Figure 23.3: Daily COVID-19 hospital census until October 01, 2022 for three scenarios
Figure 23.4: Reported daily COVID-19 deaths per 100,000
Figure 23.5: Total daily COVID-19 deaths per 100,000
More information

Data sources:

Mask use and vaccine confidence data are from the The Delphi Group at Carnegie Mellon University and University of Maryland COVID-19 Trends and Impact Surveys, in partnership with Facebook. Mask use data are also from Premise, the Kaiser Family Foundation, and the YouGov COVID-19 Behaviour Tracker survey.

Genetic sequence and metadata are primarily from the GISAID Initiative. Further details available on the COVID-19 model FAQ page.

A note of thanks:

We wish to warmly acknowledge the support of these and others who have made our COVID-19 estimation efforts possible.

More information:

For all COVID-19 resources at IHME, visit http://www.healthdata.org/covid.

To download our most recent results, visit our Data downloads page.