COVID-19 Results Briefing
The African Region
September 9, 2021

This document contains summary information on the latest projections from the IHME model on COVID-19 in the African Region. The model was run on September 8, 2021, with data through September 7, 2021.

The declining trend in reported cases and deaths continues this week in the African Region, but country trends vary widely. Eighteen countries, primarily in East, Central, and West Africa, have an effective R above 1, and thus we expect transmission to increase in those locations. While vaccination alone is not a panacea, with the high transmissibility of the Delta variant, increasing equitable access to vaccines and the pace of vaccination in the region is essential to mitigate future surges. With only 5% of the population in the African Region expected to be fully vaccinated by December 1, and as countries ease mandates, the risk of resurgence remains. In our reference scenario, we project daily reported deaths to decline until early October and then begin to rise again through December, resulting in 34,000 additional lives lost from September 7 to December 1. Behavioral responses, including mask use, reducing mobility, and social distancing, have a significant impact on the trajectory of the pandemic. If universal mask use were achieved, 15,000 lives could be saved in the African Region by December 1. The course of the pandemic can be greatly influenced by a number of factors and requires vigilant monitoring of the following issues: 1) increasing transmission in younger age groups related to school openings, especially in settings with insufficient mitigation measures in place such as weekly testing, mask use, and spacing of students; 2) the emergence and spread of major new variants that can escape natural or vaccine-derived immunity; 3) increasing hospital stress due to ongoing COVID-19 transmission in addition to other disease outbreaks like cholera; 4) efforts to increase vaccine confidence through public information campaigns and community outreach; and 5) the extent to which vaccine-derived immunity wanes. Given the available evidence on waning immunity, strategies to reduce COVID-19 transmission to zero are unlikely to succeed, indicating epidemiological surveillance and public health messaging will continue to be important tools in combating COVID-19 into 2022.

Current situation

• Daily infections in the last week decreased to 437,500 per day on average compared to 439,400 the week before (Figure 1). Daily hospital census in the last week (through September 7) decreased to 65,400 per day on average compared to 78,200 the week before.

• Daily reported cases in the last week decreased to 16,100 per day on average compared to 18,700 the week before (Figure 2).

• Reported deaths due to COVID-19 in the last week decreased to 430 per day on average compared to 510 the week before (Figure 3).
Excess deaths due to COVID-19 in the last week decreased to 1,200 per day on average compared to 1,500 the week before (Figure 3). This makes COVID-19 the number 6 cause of death in the African Region this week (Table 1). Estimated excess daily deaths due to COVID-19 in the past week were 2.9 times larger than the reported number of deaths.

The daily reported COVID-19 death rate is greater than 4 per million in Eswatini and South Africa (Figure 4).

The daily rate of excess deaths due to COVID-19 is greater than 4 per million in Botswana, Eswatini, Namibia, Seychelles, and South Africa (Figure 4).

We estimate that 19% of people in the African Region have been infected as of September 7 (Figure 6).

Effective R, computed using cases, hospitalizations, and deaths, is greater than 1 in 18 countries (Figure 7).

The infection-detection rate in the African Region was close to 4% on September 7 (Figure 8).

Based on the GISAID and various national databases, combined with our variant spread model, we estimate the current prevalence of variants of concern (Figure 9). We estimate that the Beta variant is circulating in no countries, that the Delta variant is circulating in 41 countries, and that the Gamma variant is circulating in seven countries.

Trends in drivers of transmission

Mobility last week was 12% higher than the pre-COVID-19 baseline (Figure 11). Mobility was near baseline (within 10%) in 42 countries. Mobility was lower than 30% of baseline in Seychelles.

As of September 7, in the COVID-19 Trends and Impact Survey, 50% of people self-report that they always wore a mask when leaving their home, the same as last week (Figure 13).

There were 19 diagnostic tests per 100,000 people on September 7 (Figure 15).

As of September 7, one country has reached 70% or more of the population who have received at least one vaccine dose and no countries have reached 70% or more of the population who are fully vaccinated (Figure 17).

In the African Region, 60.3% of adults say they would accept or would probably accept a vaccine for COVID-19. This is down by 0.5 percentage points from last week. The proportion of the population who are open to receiving a COVID-19 vaccine ranges from 32% in Botswana to 74% in Ghana (Figure 19).

In our current reference scenario, we expect that 147.9 million people will be vaccinated with at least one dose by December 1 (Figure 20).
In our current reference scenario, we expect that by December 1, 32% of people will be immune to non-escape variants and 27% of people will be immune to escape variants (Figure 21).

Projections

- In our reference scenario, which represents what we think is most likely to happen, our model projects 172,000 cumulative reported deaths due to COVID-19 on December 1. This represents 34,000 additional deaths from September 7 to December 1. Daily reported deaths will decline to 290 by October 7, 2021, and then increase through December (Figure 22).

- Under our reference scenario, our model projects 508,000 cumulative excess deaths due to COVID-19 on December 1. This represents 111,000 additional deaths from September 7 to December 1 (Figure 22).

- If universal mask coverage (95%) were attained in the next week, our model projects 15,000 fewer cumulative reported deaths compared to the reference scenario on December 1.

- Under our worse scenario, our model projects 183,000 cumulative reported deaths on December 1, an additional 11,000 deaths compared to our reference scenario. Daily reported deaths in the worse scenario will decline to 310 by October 1, 2021, and then increase through December (Figure 22).

- Daily infections in the reference scenario will rise to 2,030,120 on December 1, 2021 (Figure 23). Daily infections in the worse scenario will rise to 2,860,820 on December 1, 2021 (Figure 23).

- Daily cases in the reference scenario will decline to 13,780 by September 22, 2021 (Figure 24). Daily cases in the worse scenario will decline to 14,610 by September 18, 2021 (Figure 24).

- Daily hospital census in the reference scenario will decline to 53,180 by September 23, 2021 (Figure 25). Daily hospital census in the worse scenario will decline to 54,880 by September 19, 2021 (Figure 25).

- Figure 26 compares our reference scenario forecasts to other publicly archived models. Forecasts are widely divergent.

- At some point from September through December 1, 24 countries will have high or extreme stress on hospital beds (Figure 27). At some point from September through December 1, 44 countries will have high or extreme stress on intensive care unit (ICU) capacity (Figure 28).
Model updates

No model updates
Figure 1. Daily COVID-19 hospital census and infections

Figure 2. Reported daily COVID-19 cases, moving average
Table 1. Ranking of excess deaths due to COVID-19 among the leading causes of mortality this week, assuming uniform deaths of non-COVID causes throughout the year

<table>
<thead>
<tr>
<th>Cause name</th>
<th>Weekly deaths</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonatal disorders</td>
<td>14,422</td>
<td>1</td>
</tr>
<tr>
<td>Lower respiratory infections</td>
<td>12,732</td>
<td>2</td>
</tr>
<tr>
<td>HIV/AIDS</td>
<td>12,224</td>
<td>3</td>
</tr>
<tr>
<td>Malaria</td>
<td>11,351</td>
<td>4</td>
</tr>
<tr>
<td>Diarrheal diseases</td>
<td>11,088</td>
<td>5</td>
</tr>
<tr>
<td>COVID-19</td>
<td>8,641</td>
<td>6</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>8,306</td>
<td>7</td>
</tr>
<tr>
<td>Stroke</td>
<td>8,063</td>
<td>8</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>7,097</td>
<td>9</td>
</tr>
<tr>
<td>Congenital birth defects</td>
<td>3,721</td>
<td>10</td>
</tr>
</tbody>
</table>

Figure 3. Smoothed trend estimate of reported daily COVID-19 deaths (blue) and excess daily deaths due to COVID-19 (orange)
Figure 4. Daily COVID-19 death rate per 1 million on September 7, 2021

A. Daily reported COVID-19 death rate per 1 million

B. Daily excess COVID-19 death rate per 1 million
Figure 5. Cumulative COVID-19 deaths per 100,000 on September 7, 2021

A. Reported cumulative COVID-19 deaths per 100,000

B. Excess cumulative COVID-19 deaths per 100,000
Figure 6. Estimated percent of the population infected with COVID-19 on September 7, 2021

Figure 7. Mean effective R on August 27, 2021. Effective R less than 1 means that transmission should decline, all other things being held the same. The estimate of effective R is based on the combined analysis of deaths, case reporting, and hospitalizations where available. Current reported cases reflect infections 11-13 days prior, so estimates of effective R can only be made for the recent past.
Figure 8. Percent of COVID-19 infections detected. This is estimated as the ratio of reported daily COVID-19 cases to estimated daily COVID-19 infections based on the SEIR disease transmission model. Due to measurement errors in cases and testing rates, the infection-detection rate can exceed 100% at particular points in time.
Figure 9. Estimated percent of circulating SARS-CoV-2 for primary variant families on September 7, 2021

A. Estimated percent Alpha variant

B. Estimated percent Beta variant
C. Estimated percent Delta variant

D. Estimated percent Gamma variant
Figure 10. Infection-fatality rate on September 7, 2021. This is estimated as the ratio of COVID-19 deaths to estimated daily COVID-19 infections.
Critical drivers

Table 2. Current mandate implementation
Figure 11. Trend in mobility as measured through smartphone app use, compared to January 2020 baseline

Figure 12. Mobility level as measured through smartphone app use, compared to January 2020 baseline (percent) on September 7, 2021
Figure 13. Trend in the proportion of the population reporting always wearing a mask when leaving home.

Figure 14. Proportion of the population reporting always wearing a mask when leaving home on September 7, 2021.
Figure 15. Trend in COVID-19 diagnostic tests per 100,000 people

![Graph showing trend in COVID-19 diagnostic tests per 100,000 population across different regions.](image)

- African Region
- South–East Asia Region
- Eastern Mediterranean Region
- Region of the Americas
- European Region
- Western Pacific Region

Figure 16. COVID-19 diagnostic tests per 100,000 people on September 7, 2021

![Map of Africa showing the number of COVID-19 diagnostic tests per 100,000 population.](image)
Table 3. Estimates of vaccine efficacy for specific vaccines used in the model at preventing disease and infection. The SEIR model uses variant-specific estimates of vaccine efficacy at preventing symptomatic disease and at preventing infection. We use data from clinical trials directly, where available, and make estimates otherwise. More information can be found on our website.

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Efficacy at preventing disease: ancestral and Alpha</th>
<th>Efficacy at preventing disease: ancestral and Alpha</th>
<th>Efficacy at preventing disease: Beta, Delta, & Gamma</th>
<th>Efficacy at preventing infection: Beta, Delta, & Gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>AstraZeneca</td>
<td>85%</td>
<td>52%</td>
<td>83%</td>
<td>57%</td>
</tr>
<tr>
<td>CoronaVac</td>
<td>50%</td>
<td>44%</td>
<td>43%</td>
<td>38%</td>
</tr>
<tr>
<td>Covaxin</td>
<td>78%</td>
<td>69%</td>
<td>68%</td>
<td>60%</td>
</tr>
<tr>
<td>Johnson & Johnson</td>
<td>86%</td>
<td>72%</td>
<td>85%</td>
<td>56%</td>
</tr>
<tr>
<td>Moderna</td>
<td>94%</td>
<td>89%</td>
<td>93%</td>
<td>80%</td>
</tr>
<tr>
<td>Novavax</td>
<td>89%</td>
<td>79%</td>
<td>79%</td>
<td>69%</td>
</tr>
<tr>
<td>Pfizer/BioNTech</td>
<td>92%</td>
<td>86%</td>
<td>90%</td>
<td>78%</td>
</tr>
<tr>
<td>Sinopharm</td>
<td>73%</td>
<td>65%</td>
<td>63%</td>
<td>56%</td>
</tr>
<tr>
<td>Sputnik-V</td>
<td>92%</td>
<td>81%</td>
<td>80%</td>
<td>70%</td>
</tr>
<tr>
<td>Tianjin</td>
<td>66%</td>
<td>58%</td>
<td>57%</td>
<td>50%</td>
</tr>
<tr>
<td>CanSino</td>
<td>75%</td>
<td>66%</td>
<td>65%</td>
<td>57%</td>
</tr>
<tr>
<td>Other vaccines</td>
<td>75%</td>
<td>66%</td>
<td>65%</td>
<td>57%</td>
</tr>
<tr>
<td>Other vaccines (mRNA)</td>
<td>91%</td>
<td>86%</td>
<td>89%</td>
<td>78%</td>
</tr>
</tbody>
</table>
Figure 17. Percent of the population (A) having received at least one dose and (B) fully vaccinated against SARS-CoV-2 by September 7, 2021

A. Percent of the population having received one dose of a COVID-19 vaccine

B. Percent of the population fully vaccinated against SARS-CoV-2
Figure 18. Trend in the estimated proportion of the adult (18+) population that have been vaccinated or would probably or definitely receive the COVID-19 vaccine if available

Figure 19. This figure shows the estimated proportion of the adult (18+) population that has been vaccinated or would probably or definitely receive the COVID-19 vaccine if available.
Figure 20. Percent of people who receive at least one dose of a COVID-19 vaccine and those who are fully vaccinated

Figure 21. Percentage of people who are immune to non-escape variants and the percentage of people who are immune to escape variants
Projections and scenarios

We produce three scenarios when projecting COVID-19. The reference scenario is our forecast of what we think is most likely to happen:

- Vaccines are distributed at the expected pace. Brand- and variant-specific vaccine efficacy is updated using the latest available information from peer-reviewed publications and other reports.
- Future mask use is the mean of mask use over the last 7 days.
- Mobility increases as vaccine coverage increases.
- Governments adapt their response by re-imposing social distancing mandates for 6 weeks whenever daily deaths reach 8 per million, unless a location has already spent at least 7 of the last 14 days with daily deaths above this rate, and not yet re-imposed social distancing mandates. In this case, the reference scenario assumes that mandates are re-imposed when daily deaths reach 15 per million.
- Variants Alpha, Beta, Gamma, and Delta continue to spread regionally and globally from locations with sufficient transmission.

The worse scenario modifies the reference scenario assumption in four ways:

- 100% of vaccinated individuals stop using masks.
- Mobility increases in all locations to 25% above the pre-pandemic winter baseline, irrespective of vaccine coverage.
- Governments are more reluctant to re-impose social distancing mandates, waiting until the daily death rate reaches 15 per million, unless a location has already spent at least 7 of the last 14 days with daily deaths above this rate, and not yet re-imposed social distancing mandates. In this case, the reference scenario assumes that mandates are re-imposed when daily deaths reach 38 per million. In either case, we assume social distancing mandates remain in effect for 6 weeks.
- Variants Alpha, Beta, Gamma, and Delta spread between locations twice as fast when compared with our reference scenario.

The universal masks scenario makes all the same assumptions as the reference scenario but assumes all locations reach 95% mask use within 7 days.
Figure 22. Daily COVID-19 deaths until December 01, 2021 for three scenarios

A. **Reported daily COVID-19 deaths per 100,000**

![Graph showing daily COVID-19 deaths per 100,000 for three scenarios: Reference scenario, Universal mask use, and Worse.]

B. **Excess daily COVID-19 deaths per 100,000**

![Graph showing excess daily COVID-19 deaths per 100,000 for three scenarios: Reference scenario, Universal mask use, and Worse.]

Reference scenario, Universal mask use, Worse
Figure 23. Daily COVID-19 infections until December 01, 2021 for three scenarios

![Graph showing daily COVID-19 infections with three scenarios: Reference scenario, Universal mask use, Worse.](image)

Figure 24. Daily COVID-19 reported cases until December 01, 2021 for three scenarios

![Graph showing daily COVID-19 reported cases with three scenarios: Reference scenario, Universal mask use, Worse.](image)
Figure 25. Daily COVID-19 hospital census until December 01, 2021 for three scenarios

Figure 26. Comparison of reference model projections with other COVID modeling groups. For this comparison, we are including projections of daily COVID-19 deaths from other modeling groups when available: Delphi from the Massachusetts Institute of Technology (Delphi), Imperial College London (Imperial), The Los Alamos National Laboratory (LANL), and the SI-KJalpha model from the University of Southern California (SIKJalpha). Daily deaths from other modeling groups are smoothed to remove inconsistencies with rounding. Regional values are aggregates from available locations in that region.
Figure 27. The estimated inpatient hospital usage is shown over time. The percent of hospital beds occupied by COVID-19 patients is color-coded based on observed quantiles of the maximum proportion of beds occupied by COVID-19 patients. Less than 5% is considered low stress, 5-9% is considered moderate stress, 10-19% is considered high stress, and 20% or greater is considered extreme stress.
Figure 28. The estimated intensive care unit (ICU) usage is shown over time. The percent of ICU beds occupied by COVID-19 patients is color-coded based on observed quantiles of the maximum proportion of ICU beds occupied by COVID-19 patients. Less than 10% is considered low stress, 10-29% is considered moderate stress, 30-59% is considered high stress, and 60% or greater is considered extreme stress.
More information

Data sources:
Mask use and vaccine confidence data are from the The Delphi Group at Carnegie Mellon University and University of Maryland COVID-19 Trends and Impact Surveys, in partnership with Facebook. Mask use data are also from Premise, the Kaiser Family Foundation, and the YouGov COVID-19 Behaviour Tracker survey.

Genetic sequence and metadata are primarily from the GISAID Initiative. Further details available on the COVID-19 model FAQ page.

A note of thanks:
We wish to warmly acknowledge the support of these and others who have made our COVID-19 estimation efforts possible.

More information:
For all COVID-19 resources at IHME, visit http://www.healthdata.org/covid.
To download our most recent results, visit our Data downloads page.