COVID-19 Results Briefing

Indonesia

April 7, 2022

This document contains summary information on the latest projections from the IHME model on COVID-19 in Indonesia. The model was run on April 7, 2022, with data through April 1, 2022.

Current situation

Reported cases, hospital admissions, and deaths continue to decline in Indonesia. Some countries in Europe have seen a rise in cases due to the spread of BA.2, waning immunity, and behavioral changes. Our models do not suggest a BA.2 surge in Indonesia, but even if one occurs, the European experience suggests it will last approximately 3 weeks. However, the situation may change due to Ramadan gatherings.

Looking ahead to the emergence of new variants that may be more severe than Omicron, there are several strategies for Indonesia to pursue. First, maintain surveillance with a focus on early detection of new variants and monitoring of when any new variant may arrive. Second, ensure that there is widespread access to effective antivirals in advance of a new and potentially more severe variant. To date, there appears to be more policy discussion of vaccination and boosters than there is of antivirals; this imbalance should be corrected. Third, time the delivery of boosters for the elderly and those with comorbidities to have maximum impact on the next new variant. There is not sufficient evidence at this time that BA.2 spread warrants a broader push on a fourth booster except in those at high risk. Fourth, when and if transmission begins increasing substantially, individuals at risk should consider wearing a mask and socially distancing. Finally, special efforts and messaging should be used for prayers and break-fast during Ramadan to help people to celebrate this month safely and avoid COVID infections.

• Daily infections in the last week decreased to 187,000 per day on average compared to 278,000 the week before (Figure 1.1). Daily hospital census in the last week (through April 1) decreased to 4,900 per day on average compared to 8,300 the week before.

• Daily reported cases in the last week decreased to 3,800 per day on average compared to 6,700 the week before (Figure 2.1).

• Reported deaths due to COVID-19 in the last week decreased to 85 per day on average compared to 130 the week before (Figure 3.1).

• Total deaths due to COVID-19 in the last week decreased to 370 per day on average compared to 550 the week before (Figure 3.1). This makes COVID-19 the number three cause of death in Indonesia this week (Table 1). Estimated total daily deaths due to COVID-19 in the past week were 4.3 times larger than the reported number of deaths.
• The daily rate of reported deaths due to COVID-19 is greater than 4 per million in no locations (Figure 4.1).

• The daily rate of total deaths due to COVID-19 is greater than 4 per million in one location (Figure 4.2).

• We estimate that 83% of people in Indonesia have been infected at least once as of April 4 (Figure 6.1). Effective R, computed using cases, hospitalizations, and deaths, is greater than 1 in five locations and 11 subnational locations. Effective R in Indonesia was 0.7 on March 24 (Figure 7.1).

• The infection-detection rate in Indonesia was close to 1% on April 4 (Figure 8.1).

• Based on the GISAID and various national databases, combined with our variant spread model, we estimate the current prevalence of variants of concern (Figures 9.1–9.5). We estimate that the Alpha variant is circulating in eight locations and 25 subnational locations, that the Beta variant is circulating in three locations and seven subnational locations, that the Delta variant is circulating in 11 locations and 34 subnational locations, that the Gamma variant is circulating in four locations and five subnational locations, and that the Omicron variant is circulating in 11 locations and 34 subnational locations.

Trends in drivers of transmission

• Mobility last week was 1% higher than the pre-COVID-19 baseline (Figure 11.1). Mobility was lower than 15% of baseline in two locations.

• As of April 4, in the COVID-19 Trends and Impact Survey, 65% of people self-report that they always wore a mask when leaving their home compared to 66% last week (Figure 13.1).

• There were 44 diagnostic tests per 100,000 people on April 4 (Figure 15.1).

• As of April 4, nine locations and 16 subnational locations have reached 70% or more of the population who have received at least one vaccine dose, and six locations and nine subnational locations have reached 70% or more of the population who are fully vaccinated (Figure 17.1). 76% of people in Indonesia have received at least one vaccine dose, and 62% are fully vaccinated.

• In Indonesia, 86.7% of the population that is 12 years and older say they would accept a vaccine for COVID-19. Note that vaccine acceptance is calculated using survey data from the 18+ population. This is up by 0.3 percentage points from last week. The proportion of the population who are open to receiving a COVID-19 vaccine ranges from 47% in Timor-Leste to 99% in Bangladesh (Figure 19.1).

• In our current reference scenario, we expect that 207.2 million people will be vaccinated with at least one dose by August 1 (Figure 20.1). We expect that 74% of the population will be fully vaccinated by August 1.
Projections and scenarios

We produce three scenarios when projecting COVID-19. The reference scenario is our forecast of what we think is most likely to happen:

- Vaccines are distributed at the expected pace. Brand- and variant-specific vaccine efficacy is updated using the latest available information from peer-reviewed publications and other reports.
- Future mask use is the mean of mask use over the last seven days.
- Mobility increases as vaccine coverage increases.
- Omicron variant spreads according to our flight and local spread model.
- 80% of those who have had two doses of vaccine (or one dose for Johnson & Johnson) receive a third dose at six months after their second dose.

The 80% mask use scenario makes all the same assumptions as the reference scenario but assumes all locations reach 80% mask use within seven days. If a location currently has higher than 80% use, mask use remains at the current level.

The third dose scenario is the same as the reference scenario but assumes that 100% of those who have received two doses of vaccine will get a third dose at six months.

Projections

Infections

- Daily estimated infections in the reference scenario will decline to 31,470 by June 14, 2022 (Figure 22.1).
- Daily estimated infections in the 80% mask use scenario will decline to 16,870 by June 25, 2022 (Figure 22.1).
- Daily estimated infections in the third dose scenario will decline to 29,030 by June 22, 2022 (Figure 22.1).

Cases

- Daily estimated cases in the reference scenario will decline to 250 by July 3, 2022 (Figure 22.2).
- Daily estimated cases in the 80% mask use scenario will decline to 130 by July 19, 2022 (Figure 22.2).
- Daily estimated cases in the third dose scenario will decline to 230 by July 19, 2022 (Figure 22.2).

Hospitalizations

- Daily hospital census in the reference scenario will decline to 310 by June 29, 2022 (Figure 22.3).
Daily hospital census in the **80% mask use scenario** will decline to 170 by July 12, 2022 (Figure 22.3).

Daily hospital census in the **third dose scenario** will decline to 290 by July 6, 2022 (Figure 22.3).

Deaths

- In our **reference scenario**, our model projects 156,000 cumulative reported deaths due to COVID-19 on August 1. This represents 1,000 additional deaths from April 4 to August 1. Daily reported COVID-19 deaths in the **reference scenario** will decline to zero by July 9, 2022 (Figure 22.4).

- Under our **reference scenario**, our model projects 680,000 cumulative total deaths due to COVID-19 on August 1. This represents 4,400 additional deaths from April 4 to August 1 (Figure 22.5).

- In our **80% mask use scenario**, our model projects 156,000 cumulative reported deaths due to COVID-19 on August 1. This represents 950 additional deaths from April 4 to August 1. Daily reported COVID-19 deaths in the **80% mask use scenario** will decline to zero by July 22, 2022 (Figure 22.4).

- In our **third dose scenario**, our model projects 156,000 cumulative reported deaths due to COVID-19 on August 1. This represents 1,000 additional deaths from April 4 to August 1. Daily reported COVID-19 deaths in the **third dose scenario** will decline to zero by July 16, 2022 (Figure 22.4).

- Figure 23.1 compares our reference scenario forecasts to other publicly archived models. Forecasts are widely divergent.

- At some point from April through August 1, one location will have high or extreme stress on hospital beds (Figure 24.1). At some point from April through August 1, one location will have high or extreme stress on intensive care unit (ICU) capacity (Figure 25.1).
Model updates

Vaccine confidence data are from The Delphi Group at Carnegie Mellon University and University of Maryland COVID-19 Trends and Impact Surveys, in partnership with Facebook. In our previous estimates of the proportion of the population that is 12 years and older who would receive the COVID-19 vaccine if available, we included survey responses of “yes, probably” and “yes, definitely” when asked “If a vaccine to prevent COVID-19 were offered to you today, would you choose to get vaccinated?” In our analysis of vaccine uptake, we have seen that vaccination rates have largely plateaued at the level implied by the “yes, definitely” response level. Therefore, we have updated our estimates of willingness to accept the vaccine to include only survey responses of “yes, definitely.”
Figure 1.1: Daily COVID-19 hospital census and estimated infections

Figure 2.1: Reported daily COVID-19 cases, moving average
Table 1: Ranking of total deaths due to COVID-19 among the leading causes of mortality this week, assuming uniform deaths of non-COVID causes throughout the year

<table>
<thead>
<tr>
<th>Cause name</th>
<th>Weekly deaths</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke</td>
<td>6,372</td>
<td>1</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>4,718</td>
<td>2</td>
</tr>
<tr>
<td>COVID-19</td>
<td>2,577</td>
<td>3</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>2,045</td>
<td>4</td>
</tr>
<tr>
<td>Cirrhosis and other chronic liver diseases</td>
<td>1,705</td>
<td>5</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>1,472</td>
<td>6</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease</td>
<td>1,379</td>
<td>7</td>
</tr>
<tr>
<td>Diarrheal diseases</td>
<td>1,146</td>
<td>8</td>
</tr>
<tr>
<td>Hypertensive heart disease</td>
<td>973</td>
<td>9</td>
</tr>
<tr>
<td>Tracheal, bronchus, and lung cancer</td>
<td>951</td>
<td>10</td>
</tr>
</tbody>
</table>

Figure 3.1: Smoothed trend estimate of reported daily COVID-19 deaths (blue) and total daily deaths due to COVID-19 (orange)
Daily COVID-19 death rate per 1 million on April 4, 2022

Figure 4.1: Daily reported COVID-19 death rate per 1 million

Figure 4.2: Daily total COVID-19 death rate per 1 million
Cumulative COVID-19 deaths per 100,000 on April 4, 2022

Figure 5.1: Reported cumulative COVID-19 deaths per 100,000

Figure 5.2: Total cumulative COVID-19 deaths per 100,000
Figure 6.1: Estimated percent of the population infected with COVID-19 on April 4, 2022

Figure 7.1: Mean effective R on March 24, 2022. Effective R less than 1 means that transmission should decline, all other things being held the same. The estimate of effective R is based on the combined analysis of deaths, case reporting, and hospitalizations where available. Current reported cases reflect infections 11-13 days prior, so estimates of effective R can only be made for the recent past.
Figure 8.1: Percent of estimated COVID-19 infections detected. This is estimated as the ratio of reported daily COVID-19 cases to estimated daily COVID-19 infections based on the SEIR disease transmission model. Due to measurement errors in cases and testing rates, the infection-detection rate can exceed 100% at particular points in time.
Estimated percent of circulating SARS-CoV-2 for primary variant families on April 4, 2022

Figure 9.1: Estimated percent of new infections that are Alpha variant

Figure 9.2: Estimated percent of new infections that are Beta variant
Figure 9.3: Estimated percent of new infections that are Delta variant

Figure 9.4: Estimated percent of new infections that are Gamma variant
Figure 9.5: Estimated percent of new infections that are Omicron variant

Indonesia
Figure 10.1: Infection-fatality rate on April 4, 2022. This is estimated as the ratio of COVID-19 deaths to estimated daily COVID-19 infections.
Critical drivers

Table 2: Current mandate implementation

<table>
<thead>
<tr>
<th>Primary school closure</th>
<th>Secondary school closure</th>
<th>Entry restrictions for some non-residents</th>
<th>Entry restrictions for all non-residents</th>
<th>Individual curfew</th>
<th>Curfew for businesses</th>
<th>Gathering limit: 6 indoor, 10 outdoor</th>
<th>Gathering limit: 10 indoor, 25 outdoor</th>
<th>Gathering limit: 25 indoor, 50 outdoor</th>
<th>Gathering limit: 50 indoor, 100 outdoor</th>
<th>Gathering limit: 100 indoor, 250 outdoor</th>
<th>Restaurants closed</th>
<th>Bars closed</th>
<th>Restaurants / bars closed</th>
<th>Gyms, pools, other leisure closed</th>
<th>Non-essential retail closed</th>
<th>Non-essential workplaces closed</th>
<th>Stay home order</th>
<th>Stay home fine</th>
<th>Mask mandate fine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangladesh</td>
<td></td>
</tr>
<tr>
<td>Bhutan</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td></td>
</tr>
<tr>
<td>Indonesia</td>
<td></td>
</tr>
<tr>
<td>Maldives</td>
<td></td>
</tr>
<tr>
<td>Myanmar</td>
<td></td>
</tr>
<tr>
<td>Nepal</td>
<td></td>
</tr>
<tr>
<td>Sri Lanka</td>
<td></td>
</tr>
<tr>
<td>Thailand</td>
<td></td>
</tr>
<tr>
<td>Timor-Leste</td>
<td></td>
</tr>
</tbody>
</table>

Not all locations are measured at the subnational level.
Figure 11.1: Trend in mobility as measured through smartphone app use, compared to January 2020 baseline
Figure 12.1: Mobility level as measured through smartphone app use, compared to January 2020 baseline (percent) on April 4, 2022
Figure 13.1: Trend in the proportion of the population reporting always wearing a mask when leaving home

![Graph showing the trend in the proportion of the population reporting always wearing a mask when leaving home.]()

Figure 14.1: Proportion of the population reporting always wearing a mask when leaving home on April 4, 2022

![Map showing the proportion of the population reporting always wearing a mask when leaving home on April 4, 2022.]()
Figure 15.1: Trend in COVID-19 diagnostic tests per 100,000 people

Figure 16.1: COVID-19 diagnostic tests per 100,000 people on April 4, 2022
Table 3: Estimates of vaccine effectiveness for specific vaccines used in the model at preventing severe disease and infection. We use data from clinical trials directly, where available, and make estimates otherwise. More information can be found on our website.

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Ancestral</th>
<th>Alpha</th>
<th>Beta</th>
<th>Gamma</th>
<th>Delta</th>
<th>Omicron</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Severe</td>
<td>Infection</td>
<td>Severe</td>
<td>Infection</td>
<td>Severe</td>
<td>Infection</td>
</tr>
<tr>
<td>AstraZeneca</td>
<td>94%</td>
<td>63%</td>
<td>94%</td>
<td>63%</td>
<td>94%</td>
<td>69%</td>
</tr>
<tr>
<td>CanSino</td>
<td>66%</td>
<td>62%</td>
<td>66%</td>
<td>62%</td>
<td>64%</td>
<td>61%</td>
</tr>
<tr>
<td>CoronaVac</td>
<td>50%</td>
<td>47%</td>
<td>50%</td>
<td>47%</td>
<td>49%</td>
<td>46%</td>
</tr>
<tr>
<td>Covaxin</td>
<td>78%</td>
<td>73%</td>
<td>78%</td>
<td>73%</td>
<td>76%</td>
<td>72%</td>
</tr>
<tr>
<td>Johnson & Johnson</td>
<td>86%</td>
<td>72%</td>
<td>86%</td>
<td>72%</td>
<td>76%</td>
<td>64%</td>
</tr>
<tr>
<td>Moderna</td>
<td>97%</td>
<td>92%</td>
<td>97%</td>
<td>92%</td>
<td>97%</td>
<td>91%</td>
</tr>
<tr>
<td>Novavax</td>
<td>89%</td>
<td>83%</td>
<td>89%</td>
<td>83%</td>
<td>86%</td>
<td>82%</td>
</tr>
<tr>
<td>Pfizer/BioNTech</td>
<td>95%</td>
<td>86%</td>
<td>95%</td>
<td>86%</td>
<td>95%</td>
<td>84%</td>
</tr>
<tr>
<td>Sinopharm</td>
<td>73%</td>
<td>68%</td>
<td>73%</td>
<td>68%</td>
<td>71%</td>
<td>67%</td>
</tr>
<tr>
<td>Sputnik-V</td>
<td>92%</td>
<td>86%</td>
<td>92%</td>
<td>86%</td>
<td>89%</td>
<td>85%</td>
</tr>
<tr>
<td>Other vaccines</td>
<td>75%</td>
<td>70%</td>
<td>75%</td>
<td>70%</td>
<td>73%</td>
<td>69%</td>
</tr>
<tr>
<td>Other vaccines (mRNA)</td>
<td>91%</td>
<td>86%</td>
<td>91%</td>
<td>86%</td>
<td>88%</td>
<td>85%</td>
</tr>
</tbody>
</table>
Percent of the population having received at least one dose (17.1) and fully vaccinated against SARS-CoV-2 (17.2) by April 4, 2022

Figure 17.1: Percent of the population having received one dose of a COVID-19 vaccine

Figure 17.2: Percent of the population fully vaccinated against SARS-CoV-2
Figure 18.1: Trend in the estimated proportion of the population that is 12 years and older that has been vaccinated or would definitely receive the COVID-19 vaccine if available. Note that vaccine acceptance is calculated using survey data from the 18+ population.

Figure 19.1: Estimated proportion of the population that is 12 years and older that has been vaccinated or would definitely receive the COVID-19 vaccine if available. Note that vaccine acceptance is calculated using survey data from the 18+ population.
Figure 20.1: Percent of people who receive at least one dose of a COVID-19 vaccine and those who are fully vaccinated

Figure 21.1: Percent of people who are immune to Delta or Omicron. Immunity is based on protection due to prior vaccination and infection(s). Moreover, variant-specific immunity is also based on variant-variant specific protection.
Projections and scenarios

Figure 22.1: Daily COVID-19 infections until August 01, 2022 for three scenarios

Figure 22.2: Daily COVID-19 reported cases until August 01, 2022 for three scenarios
Figure 22.3: Daily COVID-19 hospital census until August 01, 2022 for three scenarios

- **Reference**
- **Third dose**
- **80% mask use**
Figure 22.4: Reported daily COVID-19 deaths per 100,000

- **Reference**
- **Third dose**
- **80% mask use**
Figure 22.5: Total daily COVID-19 deaths per 100,000
Figure 23.1: Comparison of reference model projections with other COVID modeling groups. For this comparison, we are including projections of daily COVID-19 deaths from other modeling groups when available, last model update in brackets: Delphi from the Massachusetts Institute of Technology (Delphi) [April 7, 2022], the SI-KJalpha model from the University of Southern California (SIKJalpha) [April 7, 2022]. Daily deaths from other modeling groups are smoothed to remove inconsistencies with rounding. Regional values are aggregates from available locations in that region.
Figure 24.1: The estimated inpatient hospital usage is shown over time. The percent of hospital beds occupied by COVID-19 patients is color-coded based on observed quantiles of the maximum proportion of beds occupied by COVID-19 patients. Less than 5% is considered low stress, 5-9% is considered moderate stress, 10-19% is considered high stress, and 20% or greater is considered extreme stress.
Figure 25.1: The estimated intensive care unit (ICU) usage is shown over time. The percent of ICU beds occupied by COVID-19 patients is color-coded based on observed quantiles of the maximum proportion of ICU beds occupied by COVID-19 patients. Less than 10% is considered low stress, 10-29% is considered moderate stress, 30-59% is considered high stress, and 60% or greater is considered extreme stress.
More information

Data sources:
Mask use and vaccine confidence data are from the The Delphi Group at Carnegie Mellon University and University of Maryland COVID-19 Trends and Impact Surveys, in partnership with Facebook. Mask use data are also from Premise, the Kaiser Family Foundation, and the YouGov COVID-19 Behaviour Tracker survey.

Genetic sequence and metadata are primarily from the GISAID Initiative. Further details available on the COVID-19 model FAQ page.

A note of thanks:
We wish to warmly acknowledge the support of these and others who have made our COVID-19 estimation efforts possible.

More information:
For all COVID-19 resources at IHME, visit http://www.healthdata.org/covid.
To download our most recent results, visit our Data downloads page.