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Tuberculosis 

Case Definition  
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. The case definition 

includes all forms of TB, including pulmonary TB and extrapulmonary TB, which are bacteriologically 

confirmed or clinically diagnosed. For TB, the ICD 10 codes are A10-A19.9, B90-B90.9, K67.3, K93.0, 

M49.0, P37.0, and ICD 9 codes are 010-019.9, 137-137.9, 138.0, 138.9, 139.9, 320.4, 730.4-730.6. For 

HIV-TB, the ICD 10 code is B20.0. 

Latent TB infection is defined as an infection with Mycobacterium tuberculosis, without any symptoms or 

signs of active TB disease. 

We separately estimated the incidence and prevalence of multidrug-resistant tuberculosis and 

extensively drug-resistant tuberculosis by HIV status. The case definitions are shown below. 

(1) Multidrug-resistant TB without extensive drug resistance: a form of TB (among HIV-negative 

individuals) that is resistant to the two most effective first-line anti-tuberculosis drugs (isoniazid and 

rifampicin), but is not resistant to any fluoroquinolone and any second-line injectable drugs (amikacin, 

kanamycin, or capreomycin). 

(2) Extensively drug-resistant TB: a form of TB (among HIV-negative individuals) that is resistant to 

isoniazid and rifampicin, plus any fluoroquinolone and any second-line injectable drugs. 

(3) Drug-susceptible TB: TB (among HIV-negative individuals) that is susceptible to isoniazid and 

rifampicin. 

(4) HIV/AIDS - Multidrug-resistant TB without extensive drug resistance: a form of TB (among HIV-

positive individuals) that is resistant to the two most effective first-line anti-tuberculosis drugs (isoniazid 

and rifampicin), but is not resistant to any fluoroquinolone and any second-line injectable drugs 

(amikacin, kanamycin, or capreomycin). 

(5) HIV/AIDS - Extensively drug-resistant TB: a form of TB (among HIV-positive individuals) that is 

resistant to isoniazid and rifampicin, plus any fluoroquinolone and any second-line injectable drugs. 

(6) HIV/AIDS - Drug-susceptible TB: TB (among HIV-positive individuals) that is susceptible to 

isoniazid and rifampicin. 

 

Input data 

Model inputs 
Input data for TB include annual case notifications, data from prevalence surveys, and estimated cause-

specific mortality rates (CSMR) of TB among HIV-positive and HIV-negative individuals. For latent TB 

infection (LTBI), input date include: (1) population-based tuberculin surveys, and (2) cohort studies 

examining the risk of developing active TB disease as a function of induration size. An updated systematic 

review was done for GBD 2020. The search terms, number of studies identified, and number of studies 

included are shown in the table below.  

 



 
 

Outcome Search Terms Total 
number of 
studies 
identified  

Number 
of studies 
included 

Tuberculosis Pubmed: ("tuberculosis"[MeSH] OR 
tuberculosis[Title/Abstract]  
OR TB[Title/Abstract] OR Mycobacterium 
tuberculosis[Title/Abstract] AND prevalence[Title/Abstract] 
AND ("2017/09/01"[PDAT] : "2019/02/13"[PDAT]) NOT 
(animals{SESH] NOT humans[MESH]) 
 

479 3 

LTBI (tuberculin 
surveys) 

Pubmed: ("tuberculin survey"[tiab] OR (("risk"[MeSH Terms] 
OR "risk"[tiab] OR "risk of"[tiab]) AND ("tuberculosis"[MeSH 
Terms] OR "tuberculosis"[tiab] OR "tuberculous"[tiab]) AND 
("infection"[MeSH Terms] OR "infection"[tiab])) OR 
(("risk"[MeSH Terms] OR "risk"[tiab] OR "risk of"[tiab]) AND 
TB[tiab] AND ("infection"[MeSH Terms] OR 
"infection"[tiab])) OR "latent tuberculosis infection"[tiab] 
OR "latent TB infection"[tiab] OR "latent 
tuberculosis"[MESH]) AND ("survey"[tiab] OR 
"surveys"[tiab]) NOT (animals[MESH] NOT humans[MESH]) 
("2017/09/01"[PDAT] : "2019/02/13"[PDAT]) 
 
 
Google Scholar: ("tuberculin survey" OR "risk of 
tuberculous infection" OR "risk of tuberculosis infection" 
OR "risk of TB infection" OR "latent tuberculosis infection" 
OR "latent TB infection") AND "survey". (09-08-2017 to 
2019/02/13). 

31 1 

LTBI (cohort 
studies) 

Pubmed: ("tuberculin"[tiab] OR ("tuberculin"[tiab] AND 
"positive"[tiab]) OR "Mantoux"[tiab] OR ("Mantoux"[tiab] 
AND "positive"[tiab]) OR "induration"[tiab]) AND 
(active[tiab] AND ("tuberculosis"[MeSH] OR 
"tuberculosis"[tiab])) AND ("risk"[MeSH] OR "risk"[tiab]) 
AND ("prospective"[tiab] OR "follow up"[tiab] OR 
"longitudinal"[tiab]) NOT (animals[MESH] NOT 
humans[MESH]) (“2018/06/01”[PDAT] : 
"2019/02/13"[PDAT]) 

118 2 

 

Input data for multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) include: (i) the 

number of MDR-TB cases, XDR-TB cases, new and retreated TB cases with a drug sensitivity testing (DST) 

result for isoniazid and rifampicin, and MDR-TB cases with DST for second-line drugs from routine 

surveillance and surveys reported to the World Health Organization, and (ii) the risk of MDR-TB 

associated with HIV infection from the literature.1   

 



 
 

 

PRISMA Diagram of TB All Forms Prevalence in GBD2020 

 



 
 

Prisma Diagram of Latent Tuberculosis Infectious in GBD2020 

 

Modelling Strategy 

Overview  
Our TB modelling strategy has not changed substantially from GBD 2019, but we made refinements to 

our modeling approach: we used the Meta-Regression with Bayesian Priors, Regularization, and Trimming 

(MR-BRT) model as the primary analytical engine to predict MI ratios instead of a mixed-effects 

regression, and we used modeled excess mortality rate (EMR) as input in DisMod. First, we estimated 

risk-weighted prevalence of LTBI by location, year, age, and sex using data from population-based 

tuberculin surveys and cohort studies reporting the risk of developing active TB disease as a function of 

induration size. Next, we divided the inputs on prevalence (from surveys in low- and middle-income 

countries), incidence (notification data from countries with a four- or five-star rating, and estimated 

incidence for countries with a less than four-star rating), and cause-specific mortality rate (CSMR) by the 

risk-weighted LTBI prevalence in order to model TB among those at risk in each country. Next we run MR-

BRT (with GBD super region fixed effects) using MI ratios (logit transformed) from locations with a 4- or 5-

star rating on causes of death with HAQ index as a covariate anchoring the lower end of the HAQ index 

scale with a data point from the Bangalore study2 reporting that 49.2% of 126 untreated new pulmonary 

TB cases were dead at the end of the five-year follow up period, to predict age-sex specific MI ratios for 

all locations and years. We then estimated age-sex-specific incidence using the predicted MI ratios and 

CSMR estimates. Finally, we modeled remission as a function of the HAQ index and used estimated 

remission to convert MI ratios into excess mortality rates (EMR). 

We used DisMod-MR 2.1, the GBD Bayesian meta-regression tool to generate consistent trends in all 

parameters. We then multiplied the DisMod-MR 2.1 outputs by the risk-weighted prevalence of LTBI to 



 
 

get population-level estimates of incidence and prevalence. Because the outputs from DisMod-MR 2.1 

are for all forms of TB, we split them into MDR-TB and XDR-TB by HIV status. To do so, we estimated the 

proportions of TB cases with MDR-TB for all locations and years, using data from notifications and survey 

data. We then estimated the proportions of MDR-TB among HIV-negative individuals and MDR-TB among 

HIV-positive individuals based on the risk of MDR-TB associated with HIV infection from a meta-analysis1. 

To split MDR-TB into MDR-TB with and without extensive drug resistance, we pooled the limited 

notification and survey data on the proportion of MDR-TB cases with extensive drug resistance by super-

region, and applied these proportions to MDR-TB cases among HIV-negative and HIV-positive individuals, 

respectively. 

 

Modelling risk-weighted latent TB infection prevalence 

Input data for modelling risk-weighted LTBI prevalence were from two sources: (i) population-based 

tuberculin skin test (TST) surveys, and (ii) cohort studies examining the risk of developing active TB 

disease as a function of induration size. First, we extracted the prevalence of tuberculin skin testing 

results by induration size using the most detailed induration categories reported by studies. Second, from 

cohort studies reporting on the relative risk of developing active TB disease as a function of induration 

size. In GBD 2020, we pooled the risk of developing active TB by induration size in millimeters using 

advanced MR-BRT to allow for integration over binned data. Third, we multiplied the LTBI prevalence by 

induration in millimeters ranging from 0-20+ with the relative risk of developing active TB at each 

induration size, and summed them up to derive risk-weighted LTBI prevalence for each age group.  

Available evidence3 suggests that people with very advanced HIV infection (CD4 counts <200 cells/mm3) 

may have a false-negative TST (0mm induration) due to profound immune suppression, but still have very 

high risk for TB. For those who are HIV-positive, but with higher CD4 counts, the risk for active TB 

increases with greater induration size as in HIV-negative individuals (ie, the shape of the tuberculin 

response curve is similar to that for the general population). To take into account the false-negative TST 

response in HIV cases with profound immune suppression, we first computed the proportion of HIV-

positive individuals with CD4 counts <200 cells/mm  for the 0 mm induration group using our HIV 

prevalence estimates for that particular category. We then multiplied that proportion by the relative risk 

of developing active TB disease in the 0  mm induration group compared with the 20+ mm induration 

group among HIV-positive individuals. The relative risk was computed using data from a prospective, 

multicenter cohort study of HIV-positive people in the United States.3  

Additional evidence4 indicates that lower doses of PPD (e.g. 1 TU RT23) in a tuberculin skin test yields 

smaller reactions compared to the standard dose (2 TU RT23; 5 TU PPD-S). In GBD 2020, we adjusted for 

this bias by collating data from studies that report the difference in reactivity between the standard dose 

and smaller doses in the same population. We used the reported mean difference from two studies4,5 in 

the MR-BRT model to derive a pooled difference. We then added this pooled difference to every reported 

induration category from studies using lower doses of PPD to adjust the data to the level of the standard 

dose. In GBD 2020 we also utilized the MR-BRT model to derive adjustment factors for studies where the 

entire sample is BCG-positive and for studies where BCG status is mixed. The table below contains 

adjustment factors for BCG status in GBD 2020: 

Table 1: MR-BRT Crosswalk odds ratio for Latent Tuberculosis Infection 



 
 

Reference or alternative 
case definition 

Gamma Beta Coefficient, 
Logit (95% CI) 

Relative Odds ratio* 

BCG Negative 0.36 --- --- 

BCG Mixed 0.09 (-0.04 to 0.22) 1.09 (0.97 to 1.25) 

BCG Positive 0.42 (0.39 to 0.45) 1.52 (1.48 to 1.57) 

*MR-BRT crosswalk adjustments can be interpreted as the factor the alternative case definition is adjusted by to 

reflect what it would have been had it been measured using the reference case definition. If the log/logit beta 

coefficient is negative, then the alternative is adjusted up to the reference. If the log/logit beta coefficient is positive, 

then the alternative is adjusted down to the reference.   

**The adjustment factor column is the exponentiated beta coefficient. For log beta coefficients, this is the relative 

rate between the two case definitions. For logit beta coefficients, this is the relative odds between the two case 

definitions. 

 

Using the risk-weighted LTBI prevalence (adjusted for a false-negative TST among people with advanced 

HIV infection, for non-standard PPD doses, and for BCG status) as input data, we ran a DisMod-MR 2.1 

model with the HAQ index covariate to help inform variation over year and geography, with priors that at 

higher HAQ index values, LTBI prevalence decreases. To stabilize temporal trends we included a covariate 

for year with priors such that LTBI prevalence decreases over time. 

 

Modelling TB incidence  
Incidence inputs were from two different sources: (1) incidence from notification data for countries with 

a four- or five-star rating on their cause of death data6 as a proxy for the quality of health-related 

administrative data systems, and (2) estimated incidence for countries with a less than four-star rating. 

We used the age- and sex-specific notifications (all new and relapse cases combined) in our analysis. Prior 

to 2013, notification data were available by case type (new pulmonary smear-positive, new pulmonary 

smear-negative, and new extra-pulmonary) and there were missing age data, especially for younger age 

groups in some countries. We imputed the missing age groups for the three forms of TB notifications. 

Smear-positive age-specific notifications were inflated with the proportion smear-unknown and relapsed 

cases only reported at the country-year level. Some countries reported only pulmonary smear-positive 

cases for selected years. Missing smear-negative and extrapulmonary cases were predicted from the 

adjusted smear-positive cases using a seemingly unrelated regression. All three types of notifications 

were added together to represent TB-all-form incidence for countries with a four- or five-star rating.  

To generate incidence estimates for locations with a less than four-star rating, we implemented the MR-

BRT model with age and sex dummies and super-region fixed effects, using MI ratios (logit transformed) 

from locations with a 4- or 5-star rating on causes of death as input data with HAQ index as a covariate 

anchoring the lower end of the HAQ index scale with a data point from a cohort study in the 1960s2 

reporting that 49.2% of 126 untreated new pulmonary TB cases were dead at the end of the five-year 

follow-up period, in order to predict age-sex-specific MI ratios for all locations and years. We then used 

the MI ratios and cause-specific mortality estimates to compute the incidence input for DisMod-MR 2.1 

for locations with a less than four-star rating. In locations where MI ratio based incidence was lower than 

notification-based incidence, we dropped the MI ratio based incidence and allowed DisMod to estimate 

incidence by triangulating between mortality, prevalence, excess mortality, and remission. For 

comparisons between MI ratio based incidence and notification based incidence, we used the year 2010 



 
 

and assumed a similar proportional difference across all other years. Finally, we computed the age-sex-

specific incidence of TB among the latent TB-infected population, using TB incidence as the numerator 

and our estimated risk-weighted latent TB infection prevalence as the denominator.  

 

Modelling TB prevalence  
Data from prevalence surveys reporting on pulmonary smear-positive TB and bacteriologically positive TB 

were included. Because incidence data are for all forms of TB, we adjusted prevalence surveys to account 

for extrapulmonary cases. We ran a spatiotemporal Gaussian process regression to predict location-year-

age-sex-specific proportions of extrapulmonary TB among all TB cases using data on the three forms of TB 

from the incidence data above. We then computed the extrapulmonary inflation factor as 1+( proportion 

of extrapulmonary TB /(1- proportion of extrapulmonary TB)), and applied it to data from prevalence 

surveys.  

In GBD 2020, we used the MR-BRT model to derive adjustment factors for studies where the case 

definition was smear-positive TB rather than bacteriologically positive TB (reference). For the adjustment, 

we identified all prevalence surveys that provided comparisons of smear-positive TB and bacteriologically 

positive TB from the same sample. Overall, 16 prevalence surveys from Cambodia, China, Ethiopia, 

Gambia, India, Myanmar, South Korea, Philippines, Rwanda, and Vietnam were included as inputs in the 

MR-BRT model. The model also contained covariates for sex and age to reflect gradients across 

demographics. In GBD 2020 we also computed an adjustment factor to adjust studies that used 

symptoms only as a screening method compared to studies using both symptoms and chest X-ray during 

screening (reference). To derive the adjustment factor, we ran a MR-BRT model where data from six 

studies7,8,9,10,11,12 comparing prevalence between using symptoms only as opposed to symptoms and chest 

X-ray in the same population as input. The adjustment factors are in the table below. 

Finally, we computed the prevalence of TB among the TB-infected population, using TB prevalence as the 

numerator and our estimated risk-weighted LTBI prevalence as the denominator. We included two 

location-level covariates, namely, age-standardised adult underweight prevalence and log-transformed 

age-standardised Summary Exposure Variable (SEV) scalar for TB (a summary variable of the exposure 

levels of TB risk factors weighted by relative risk) to help inform variation of TB prevalence over year and 

geography. 

Table 2: MR-BRT Crosswalk Relative Odds Ratio for Tuberculosis Prevalence  

Reference or alternative case 
definition 

Gamma Beta Coefficient, 
Log (95% CI) 

Relative Odds 
Ratio* 

Bacteriologically positive 0.23 --- --- 

Smear positive -0.46 (-0.70 to -0.22) 0.63 (0.50 to 0.80) 

Symptoms and chest X-ray 0 --- --- 

Symptoms only -0.37 (-0.50 to -0.25) 0.69 (0.61 to 0.78) 



 
 

*MR-BRT crosswalk adjustments can be interpreted as the factor the alternative case definition is adjusted by to 

reflect what it would have been had it been measured using the reference case definition. If the log/logit beta 

coefficient is negative, then the alternative is adjusted up to the reference. If the log/logit beta coefficient is positive, 

then the alternative is adjusted down to the reference.   

**The adjustment factor column is the exponentiated beta coefficient. For log beta coefficients, this is the relative 

rate between the two case definitions. For logit beta coefficients, this is the relative odds between the two case 

definitions. 

 

Modelling TB remission and excess mortality  
In GBD 2020 we computed TB duration based on a systematic review of studies during the pre-

chemotherapy era finding that duration from onset to cure or death is 3 years.13 To anchor the lowest 

end of TB duration we assumed a duration of 6 months based on treatment regiments. We then linearly 

interpolated between 6 months and 3 years across the HAQ index to compute TB duration for every 

country-year. We converted duration into remission by taking the inverse (e.g. Remission = 1/duration). 

Using HAQ-based remission and estimated MI ratios, we computed excess mortality rate (EMR) with the 

following computation: EMR = MI*Remission (formula derived from Prevalence=Incidence*Duration) 

DisMod-MR 2.1 
For each location, we included the following as input in the DisMod model: case notifications for locations 

with a four- or five-star rating, predicted MI-ratio-based incidence for locations with a less than four-star 

rating, prevalence survey data where available, predicted excess mortality estimates, HAQ-based 

remission, and CSMR (TB and HIV-TB combined) by age and sex.  

The output from the DisMod model was for all forms of TB in TB-infected populations, including both HIV-

negative and HIV-positive individuals. We computed the incidence and prevalence of TB among the entire 

population, by multiplying the prevalence of LTBI with the DisMod model estimates. Betas and 

exponentiated values from the DisMod model are shown in the table below.  

Covariate Parameter Beta (95% CI) Exponentiated beta (95% 
CI) 

Sex (male) Prevalence 0.34 ( 0.31 — 0.38) 1.41 (1.36 — 1.46) 

Sex (male) Incidence 0.38 ( 0.38 — 0.39) 1.47 (1.46 — 1.47) 

Age-standardised 
proportion adult 
underweight 

Prevalence 2.39 ( 2.03 — 2.71) 10.88 (7.61 — 15.10) 

Age-standardised SEV 
scalar (log-
transformed) 

Prevalence 0.75 ( 0.75 — 0.76) 2.12 (2.12 — 2.13) 

*MR-BRT crosswalk adjustments can be interpreted as the factor the alternative case definition is adjusted by to 

reflect what it would have been had it been measured using the reference case definition. If the log/logit beta 

coefficient is negative, then the alternative is adjusted up to the reference. If the log/logit beta coefficient is positive, 

then the alternative is adjusted down to the reference.   

**The adjustment factor column is the exponentiated beta coefficient. For log beta coefficients, this is the relative 

rate between the two case definitions. For logit beta coefficients, this is the relative odds between the two case 

definitions. 

 



 
 

HIV-TB incidence and prevalence  
To distinguish HIV-TB from all forms of TB, we first estimated the proportions of HIV-TB cases among all 

TB cases using data on the number of TB cases recorded as HIV-positive and the number of TB cases with 

an HIV test result recorded in the WHO TB notifications register. We ran a mixed effects regression using 

the adult HIV death rate as a covariate to predict location-year-specific HIV-TB proportions, which were 

then applied to TB incident and prevalent cases from DisMod, to generate HIV-TB incident and prevalent 

cases by location and year. These cases were then age-sex split based on the age-sex pattern of estimated 

HIV prevalence by location-year to generate location-year-age-sex-specific HIV-TB incident and prevalent 

cases.  

 

Multidrug-resistant TB, extensively drug-resistant TB, and drug-susceptible TB  
We ran spatiotemporal Gaussian process regressions to predict the proportions of new TB cases with 

MDR-TB, proportions of retreated TB cases with MDR-TB, and proportions of retreated cases among all 

TB cases for all locations and years. We calculated the proportions of new TB cases among all TB cases as 

1- estimated proportions of retreated cases. Next, we computed the weighted average of the proportions 

of new and retreated cases with MDR-TB at the 1000 draw level. We then used the weighted average 

proportions of MDR-TB, along with the HIV-TB and TB no-HIV incidence estimates, and the relative risk of 

MDR-TB associated with HIV infection from the literature1 to compute the proportions of MDR-TB cases 

among HIV-negative TB cases (𝑃𝑛𝑜𝐻𝐼𝑉𝑐,𝑦,𝑎,𝑠) by location, year, age, and sex using the following formula: 

 

𝑃𝑛𝑜𝐻𝐼𝑉𝑐,𝑦,𝑎,𝑠 =
𝑀𝐷𝑅𝑐,𝑦

(1 + (𝑅𝑅
𝐻𝐼𝑉𝑇𝐵𝑐,𝑦,𝑎,𝑠

𝑇𝐵𝑛𝑜𝐻𝐼𝑉𝑐,𝑦,𝑎,𝑠
)) 𝑇𝐵𝑛𝑜𝐻𝐼𝑉𝑐,𝑦,𝑎,𝑠

 

 

where 𝑀𝐷𝑅𝑐,𝑦 is the number of all MDR-TB cases among HIV-positive and HIV-negative individuals by 

location and year, RR is the relative risk of MDR-TB associated with HIV infection, 𝐻𝐼𝑉𝑇𝐵𝑐,𝑦,𝑎,𝑠 is the 

number of HIV-TB incident cases by location, year, age, and sex, and 𝑇𝐵𝑛𝑜𝐻𝐼𝑉𝑐,𝑦,𝑎,𝑠 is the number of TB 

no-HIV incident cases by location, year, age, and sex. 

 

We then applied the predicted proportions of MDR-TB cases among HIV-negative TB cases to our 

predicted HIV-negative TB incident and prevalent cases to generate MDR-TB incident and prevalent cases 

by location, year, age, and sex. Next, we subtracted MDR-TB cases from all HIV-negative TB cases to 

generate drug-susceptible TB cases by location, year, age, and sex. To distinguish XDR-TB from MDR-TB, 

we aggregated the XDR-TB cases and MDR-TB cases (with drug sensitivity testing for second-line drugs) 

up to the super-region level and calculated the super-region-level proportions of XDR-TB among MDR-TB 

cases, which were then applied to MDR-TB cases in corresponding countries within the super-regions to 

produce XDR-TB cases by location, year, age, and sex. We linearly extrapolated XDR-TB prevalence and 

incidence back assuming the rates were zero in 1992, one year before 1993 when XDR-TB was first 

recorded in USA surveillance data.14 Finally, we subtracted XDR-TB cases from MDR-TB cases to generate 

MDR-TB (without XDR) cases by location, year, age, and sex.   

` 



 
 

HIV/AIDS - Multidrug-resistant TB, HIV/AIDS - extensively drug-resistant TB, and HIV/AIDS - drug-

susceptible TB  
To split HIV-TB into HIV-MDR-TB and HIV-drug-susceptible-TB, we first calculated the proportions of HIV-

MDR-TB among all HIV-TB cases (𝑃𝐻𝐼𝑉𝑐,𝑦,𝑎,𝑠) for each location, year, age, and sex using the following 

formula: 

 

𝑃𝐻𝐼𝑉𝑐,𝑦,𝑎,𝑠 = 𝑃𝑛𝑜𝐻𝐼𝑉𝑐,𝑦,𝑎,𝑠𝑅𝑅 

 

where 𝑃𝑛𝑜𝐻𝐼𝑉𝑐,𝑦,𝑎,𝑠 is the proportions of MDR-TB among all HIV-negative TB cases for each location, 

year, age, and sex and 𝑅𝑅 is the relative risk of MDR-TB associated with HIV infection. We then applied 

the predicted proportions of MDR-TB cases among HIV-TB cases to our estimated HIV-TB incident and 

prevalent cases to generate HIV-MDR-TB incident and prevalent cases by location, year, age, and sex. 

Next, we subtracted HIV-MDR-TB cases from all HIV-TB cases to generate HIV-drug-susceptible-TB cases 

by location, year, age, and sex. To separate out HIV-XDR-TB from HIV-MDR-TB, we applied the super-

region level proportions of XDR-TB among MDR-TB cases, to HIV-MDR-TB cases in corresponding 

countries within the super-regions to produce HIV-XDR-TB cases by location, year, age, and sex. We 

linearly extrapolated HIV-XDR-TB prevalence and incidence back assuming the rates were zero in 1992, 

one year before 1993 when XDR-TB was first recorded in USA surveillance data.14 Finally, we subtracted 

HIV-XDR-TB cases from HIV-MDR-TB cases to generate HIV-MDR-TB (without extensive drug resistance) 

cases by location, year, age, and sex.   

 

New MDR-TB and XDR-TB cases among retreated cases by HIV status 
Because we split TB incidence (new and relapse cases combined) by drug-resistance type, the above 

estimation did not capture new MDR-TB and XDR-TB cases arising from retreated TB cases other than 

relapse cases. We therefore separately estimated new MDR-TB and XDR-TB cases arising from retreated 

TB cases and added them to the incident cases estimated above. To do so, we first ran a spatiotemporal 

Gaussian process regression using notification data and HAQ index as a covariate to predict the 

proportion of retreated cases (excluding relapse cases) among all TB patients for all locations and years. 

Next, we computed retreated cases as (retreated proportion*estimated incident cases)/(1-retreated 

proportion). We then computed the total number of TB cases by summing estimated incident cases and 

retreated cases. Similar to our estimation for MDR-TB and XDR-TB among TB incident cases by HIV status, 

we estimated MDR-TB and XDR-TB cases among all TB cases (incident cases and retreated cases 

combined) by HIV status. Finally, the number of retreated cases with MDR-TB was computed by 

subtracting MDR-TB among TB incident cases from MDR-TB among all TB cases (incident cases and 

retreated cases combined), separately for HIV-positive and HIV-negative individuals. Similarly, the 

number of retreated cases with XDR-TB was computed by subtracting XDR-TB among TB incident cases 

from XDR-TB among all TB cases, separately for HIV-positive and HIV-negative individuals. All 

computations were done at the 1000-draw level. 

 

Disability weights 
The lay descriptions and disability weights for severity levels derived from the GBD disability weights 

study are shown below.  



 
 

Health state name Lay description Disability Weights 
(95% CI) 

Tuberculosis, not 
HIV infected 

has a persistent cough and fever, is short of breath, 
feels weak, and has lost a lot of weight 

0.333 (0.224–0.454) 

Tuberculosis, HIV 
infected 

has a persistent cough and fever, shortness of 
breath, night sweats, weakness and fatigue and 
severe weight loss 

0.408 (0.274–0.549) 

 

For drug-susceptible TB, MDR-TB without extensive drug resistance, and XDR-TB, we used the same 

disability weight [0.333 (0.224–0.454)] as in non-HIV-infected TB. For HIV-drug-susceptible-TB, HIV-MDR-

TB without extensive drug resistance, and HIV-XDR-TB, we used the same disability weight [0.408 (0.274–

0.549))] as in HIV-infected TB. 

Source Counts  

Data Measure Total sources Countries with data 

Tuberculosis All measures 4048 194 

 Prevalence 147 167 

 Incidence 627 78 

 Relative risk 36 26 

 Proportion 3579 193 

Latent tuberculosis infection All measures 127 56 

 Prevalence 91 43 

 Relative risk 36 26 

Proportion of HIV-TB among all TB cases All measures   

 Proportion   
MDR-TB and MDR-HIV-TB proportions All measures 4413 192 

 Proportion 4413 192 

XDR-TB and XDR-HIV-TB proportions All measures 85 84 

 Proportion 85 84 
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